Pandas¶

  • https://pandas.pydata.org
  • very high-level data containers with corresponding functionality
  • many useful tools to work with time-series (look at Series.rolling)
  • many SQL-like data operations (group, join, merge)
  • Interface to a large variety of file formats (see pd.read_[...] functions)
  • additional package with data-interface/API to many data repositories (https://pandas-datareader.readthedocs.io/en/latest/remote_data.html)
In [1]:
import pandas as pd

Basic Data Structures¶

Series¶

One-dimensional ndarray with axis labels (called index).

Series can be created like an array

In [2]:
pd.Series([11,13,17,19,23])
Out[2]:
0    11
1    13
2    17
3    19
4    23
dtype: int64

or, if you want a special index

In [3]:
series = pd.Series([11,13,17,19,23], index=['a', 'b', 'c', 'd', 'e'])
print(series)
a    11
b    13
c    17
d    19
e    23
dtype: int64

to get the content back you can use

In [4]:
series.index
Out[4]:
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
In [5]:
series.values
Out[5]:
array([11, 13, 17, 19, 23])

but the power of pandas lies in all the other attributes

In [6]:
#series. [TAB]

DataFrame¶

The primary pandas data structure.

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes. (index: row labels, columns: column labels) Can be thought of as a dict-like container for Series objects.

The easiest way to create a DataFrame is to read it from an input file (see later)

In addition there are many ways to create DataFrames manually. Most straight forward probably is to use a dict of iterables. (Series, Lists, Arrays). Pandas tries to choose sensible indexes.

In [7]:
frame = pd.DataFrame({"primes": series, "fibo": [1,1,2,3,5], "0-4": range(5)})
In [8]:
print(frame)
   primes  fibo  0-4
a      11     1    0
b      13     1    1
c      17     2    2
d      19     3    3
e      23     5    4

Refugee Example¶

We now want to use pandas to work with data from the World Bank. My goal is to create a plot showing the burden refugees put on different countries. For this we will plot the fraction of refugee in a give countries population versus that countries GDP.

I downloaded and extracted the following data-sets from the Worldbank website manually:

  • Refugee population by country or territory of asylum: https://data.worldbank.org/indicator/SM.POP.REFG
  • Population, total: https://data.worldbank.org/indicator/SP.POP.TOTL
  • GDP per capita (current US$): https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
In [9]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Loading and Accessing Data¶

loading a data file with pandas is trivial

In [10]:
refugees = pd.read_csv("data/refugee-population.csv", skiprows=4)
In [11]:
refugees.head()
Out[11]:
Country Name Country Code Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 ... 2014 2015 2016 2017 2018 2019 2020 2021 2022 Unnamed: 67
0 Aruba ABW Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 Africa Eastern and Southern AFE Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN ... 2637640.0 3333273.0 3990478.0 5155400.0 5114399.0 5087755.0 5183533.0 5436720.0 5412266.0 NaN
2 Afghanistan AFG Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN ... 300421.0 257553.0 59770.0 75927.0 72228.0 72227.0 72278.0 66949.0 52159.0 NaN
3 Africa Western and Central AFW Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN ... 1108169.0 1138010.0 1200854.0 1172523.0 1285773.0 1315229.0 1474135.0 1631057.0 1705777.0 NaN
4 Angola AGO Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN ... 15468.0 15547.0 15547.0 41119.0 39856.0 25793.0 25791.0 26045.0 25514.0 NaN

5 rows × 68 columns

As you can see pandas choose the right column labels and numbered the rows continously.

We can easily change the row labels (the index) to one of the columns.

In [12]:
refugees.set_index(["Country Code"], inplace=True)
In [13]:
refugees.head()
Out[13]:
Country Name Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 1966 ... 2014 2015 2016 2017 2018 2019 2020 2021 2022 Unnamed: 67
Country Code
ABW Aruba Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
AFE Africa Eastern and Southern Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN ... 2637640.0 3333273.0 3990478.0 5155400.0 5114399.0 5087755.0 5183533.0 5436720.0 5412266.0 NaN
AFG Afghanistan Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN ... 300421.0 257553.0 59770.0 75927.0 72228.0 72227.0 72278.0 66949.0 52159.0 NaN
AFW Africa Western and Central Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN ... 1108169.0 1138010.0 1200854.0 1172523.0 1285773.0 1315229.0 1474135.0 1631057.0 1705777.0 NaN
AGO Angola Refugee population by country or territory of ... SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN ... 15468.0 15547.0 15547.0 41119.0 39856.0 25793.0 25791.0 26045.0 25514.0 NaN

5 rows × 67 columns

Now it's easy to select rows or columns

In [14]:
refugees.loc[["CHE","DEU"]]
Out[14]:
Country Name Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 1966 ... 2014 2015 2016 2017 2018 2019 2020 2021 2022 Unnamed: 67
Country Code
CHE Switzerland Refugee population by country or territory of ... SM.POP.REFG 20000.0 20000.0 20000.0 20000.0 20000.0 20000.0 20500.0 ... 62596.0 73326.0 82668.0 93030.0 104011.0 110162.0 115798.0 118829.0 182474.0 NaN
DEU Germany Refugee population by country or territory of ... SM.POP.REFG 197000.0 190000.0 185000.0 182000.0 180000.0 180000.0 140000.0 ... 216956.0 316098.0 669468.0 970357.0 1063835.0 1146682.0 1210596.0 1255694.0 2075445.0 NaN

2 rows × 67 columns

In [15]:
refugees[["1990","2000"]].head()
Out[15]:
1990 2000
Country Code
ABW NaN NaN
AFE 4709569.0 2444941.0
AFG 50.0 NaN
AFW 932052.0 968325.0
AGO 11557.0 12086.0
In [16]:
refugees.get(["1990","2000"]).head()
Out[16]:
1990 2000
Country Code
ABW NaN NaN
AFE 4709569.0 2444941.0
AFG 50.0 NaN
AFW 932052.0 968325.0
AGO 11557.0 12086.0

Working with a Single Country¶

With this we now choose the data for one country, remove all missing values and then create a plot:

In [17]:
che = refugees.loc["CHE"][[str(year) for year in range(1990,2023)]]
In [18]:
che.dropna().plot()
plt.show()

Usually it is easier to work with real datetime objects instead of strings. So we convert the index to datetime

In [19]:
che.index.values
Out[19]:
array(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
       '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
       '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
       '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',
       '2022'], dtype=object)
In [20]:
che.index = pd.to_datetime(che.index, format="%Y")
print(che.index)
DatetimeIndex(['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01',
               '1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01',
               '1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01',
               '2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01',
               '2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
               '2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
               '2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01',
               '2018-01-01', '2019-01-01', '2020-01-01', '2021-01-01',
               '2022-01-01'],
              dtype='datetime64[ns]', freq=None)

As mentioned in the introduction, pandas offers a very usefull rolling method

In [21]:
che.plot()
che.rolling(center=False,window=5).mean().plot()
plt.show()

Removing Unwanted Data¶

We now want to create a scatter plot with refugees divided by population vs. gdp-per-captita. For each data set we will use the mean of the last 5 years.

Some of the rows and columns in the World-Bank Files are of no interest for this. We can remove these easily.

Excluding Non-Countries¶

The World-Bank provides meta-data for each country, where we can identify rows with non-countries (e.g. regional aggregates)

In [22]:
!head data/metadata-countries_population.csv


"AFG","South Asia","Low income","The reporting period for national accounts data is designated as either calendar year basis (CY) or fiscal year basis (FY). For this country, it is fiscal year-based (fiscal year-end: March 20). Also, an estimate (PA.NUS.ATLS) of the exchange rate covers the same period and thus differs from the official exchange rate (CY).






We load this file and extract the two relevant columns

In [23]:
meta = pd.read_csv("data/metadata-countries_population.csv")
In [24]:
meta.columns
Out[24]:
Index(['Country Code', 'Region', 'IncomeGroup', 'SpecialNotes', 'TableName',
       'Unnamed: 5'],
      dtype='object')
In [25]:
meta = meta[['Country Code', 'Region']]
In [26]:
meta.head()
Out[26]:
Country Code Region
0 ABW Latin America & Caribbean
1 AFE NaN
2 AFG South Asia
3 AFW NaN
4 AGO Sub-Saharan Africa
In [27]:
meta.set_index("Country Code", inplace=True)

From this we create a list of non-countries

In [28]:
non_countries = meta.loc[meta.Region.isnull()].index
print(non_countries)
Index(['AFE', 'AFW', 'ARB', 'CEB', 'CSS', 'EAP', 'EAR', 'EAS', 'ECA', 'ECS',
       'EMU', 'EUU', 'FCS', 'HIC', 'HPC', 'IBD', 'IBT', 'IDA', 'IDB', 'IDX',
       'LAC', 'LCN', 'LDC', 'LIC', 'LMC', 'LMY', 'LTE', 'MEA', 'MIC', 'MNA',
       'NAC', 'OED', 'OSS', 'PRE', 'PSS', 'PST', 'SAS', 'SSA', 'SSF', 'SST',
       'TEA', 'TEC', 'TLA', 'TMN', 'TSA', 'TSS', 'UMC', 'WLD'],
      dtype='object', name='Country Code')

and finally exclude the relevant rows

In [29]:
refugees = refugees.drop(non_countries)

Excluding Columns¶

The data contains a few rows with unneeded text

In [30]:
refugees.columns
Out[30]:
Index(['Country Name', 'Indicator Name', 'Indicator Code', '1960', '1961',
       '1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',
       '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979',
       '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',
       '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
       '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
       '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
       '2016', '2017', '2018', '2019', '2020', '2021', '2022', 'Unnamed: 67'],
      dtype='object')

In addition, the last column might be missig a lot of data

In [31]:
np.sum(refugees["2022"].notnull())
Out[31]:
163

so we can create a list of all interesting columns

In [32]:
useful_cols = []
last_year = 2022 # depending on output above
for year in range(last_year-5,last_year+1): 
    useful_cols.append(str(year))
In [33]:
useful_cols
Out[33]:
['2017', '2018', '2019', '2020', '2021', '2022']

with this, we:

  • select the reduced dataset
  • switch the index to Country Code
  • calculate the mean for each country
In [34]:
refugees = refugees[useful_cols]
In [35]:
refugee_means = refugees.mean(axis=1)

Loading Additional Files¶

Of course we could execute these commands again manually for the two remaining data-files. However, the proper way to solve this is to create a function for this. Especially since all files have the exact same structure.

In [36]:
def load_file(file):
    """Load and process a Worldbank File"""
    data = pd.read_csv(file, skiprows=4)
    data.set_index("Country Code", inplace=True)
    data.drop(non_countries, inplace=True)
    data = data[useful_cols]
    return data.mean(axis=1), data
In [37]:
gdp_means, gdp = load_file("data/gdp-per-capita.csv") 
In [38]:
gdp_means.head()
Out[38]:
Country Code
ABW    29195.590031
AFG      482.654165
AGO     2219.687217
ALB     5622.992095
AND    41023.002828
dtype: float64
In [39]:
gdp.head()
Out[39]:
2017 2018 2019 2020 2021 2022
Country Code
ABW 29326.708058 30918.515218 31902.762582 24487.863569 29342.100730 NaN
AFG 530.149863 502.057099 500.522981 516.866797 363.674087 NaN
AGO 2283.214233 2487.500996 2142.238757 1502.950754 1903.717405 2998.501158
ALB 4531.032207 5287.660817 5396.214227 5343.037704 6377.203096 6802.804519
AND 40632.231554 42904.828456 41328.600499 37207.222000 42072.341103 41992.793358
In [40]:
population_means, population = load_file("data/population.csv")

Creating the Plot¶

We now combine our three Series with means into one DataFrame and create our plot.

In [41]:
data = pd.DataFrame({"gdp": gdp_means, "refugees": refugee_means/population_means}).dropna()

(Here we loose some countries with missing data.)

In [42]:
data.plot.scatter("gdp", "refugees")
plt.show()

We can quickly find out who the three top countries are:

In [43]:
data.where(data["refugees"]>0.1).dropna()
Out[43]:
gdp refugees
Country Code
JOR 4103.047067 0.277147
LBN 7313.453707 0.239103
PSE 3590.180327 0.491745

To improve readability:

  • we switch to a log-log axis (we need to exclude countries with too small refugee numbers)
  • we highlight one selected country
  • We add a title
In [44]:
ax = data[data["refugees"] > 1e-10].plot.scatter(y="refugees", x="gdp", loglog=True)
ax = data.loc[["CHE"]].plot.scatter(y="refugees", x="gdp", ax=ax, color="r", label="Switzerland")
plt.title("refugees fraction vs. gdp")
plt.show()

again we can print the info for one country

In [45]:
data.loc["CHE"]
Out[45]:
gdp         86890.390629
refugees        0.014023
Name: CHE, dtype: float64

Highlighting a Full Region¶

Based on the meta data provided by the World Bank, we can highlight a region

In [46]:
europe = meta.loc[meta.Region == "Europe & Central Asia"].index
In [47]:
europe[:10]
Out[47]:
Index(['ALB', 'AND', 'ARM', 'AUT', 'AZE', 'BEL', 'BGR', 'BIH', 'BLR', 'CHE'], dtype='object', name='Country Code')
In [48]:
ax = data[data["refugees"] > 1e-10].plot.scatter(y="refugees", x="gdp", loglog=True)
ax = data.loc[data.index.intersection(europe)].plot.scatter(y="refugees", x="gdp", ax=ax, color="r", label="Europe & Central Asia")
plt.title("refugees fraction vs. gdp")
plt.show()

(As we lost some countries with missing data when we called dropna above, we need the data.index.intersection-call to select only country codes really contained in our data.)

Fitting¶

We now look at a tiny subset of this data and look at ways to fit a function to it.

Scipy preparse a huge number of options, we will look at three options of increasing complexity and flexibility.

Preparations¶

first we select our subset

In [49]:
europe_small = ['AUT',
 'DEU',
 'FRA',
 'ITA',
]
In [50]:
data_eu = data.loc[europe_small].dropna()
data_eu
Out[50]:
gdp refugees
Country Code
AUT 50590.749602 0.017460
DEU 47632.398320 0.015473
FRA 40751.983647 0.006578
ITA 33758.229029 0.003165
In [51]:
ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
plt.title("refugees fraction vs. gdp")
plt.show()

and we create a vector with all the x values we will need to plot our fit result

In [52]:
x = np.linspace(data_eu["gdp"].min(), data_eu["gdp"].max(), 100)

polyfit¶

Polyfit is probably the easiest way to fit a polynome to given data.

In [53]:
from numpy import polyfit, polyval
In [54]:
res = polyfit(data_eu["gdp"], data_eu["refugees"],1)
print(res)
[ 8.99316549e-07 -2.81665523e-02]
In [55]:
ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, polyval(res, x))
plt.title("refugees fraction vs. gdp")
plt.show()

curve_fit¶

With curve_fit you can define a complex fit function.

In [56]:
from scipy.optimize import curve_fit
In [57]:
def fit_function(x,b,c):
    return b*x+c
In [58]:
res = curve_fit(fit_function, data_eu["gdp"], data_eu["refugees"])
print(res)
(array([ 8.99316549e-07, -2.81665522e-02]), array([[ 1.54432316e-14, -6.66890325e-10],
       [-6.66890325e-10,  2.94526038e-05]]))
In [59]:
ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, *(res[0])))
plt.title("refugees fraction vs. gdp")
plt.show()

leastsq¶

Finally, least-squares allows you to even specify the cost function. With this you can factor in uncertainties or weights for your data points.

In [60]:
from scipy.optimize import leastsq
In [61]:
def fit_function(x, p):
    return x*p[0]+p[1]
In [62]:
def error_function(params):
    return data_eu["refugees"] - fit_function(data_eu["gdp"], params)
In [63]:
res = leastsq(error_function, [0,0])
print(res)
(array([ 8.99316549e-07, -2.81665523e-02]), 3)
In [64]:
ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, res[0]))
plt.title("refugees fraction vs. gdp")
plt.show()

statsmodels¶

In [65]:
import statsmodels.formula.api as smf
In [66]:
res = smf.ols("refugees ~ gdp", data=data_eu).fit()
In [67]:
print(res.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               refugees   R-squared:                       0.963
Model:                            OLS   Adj. R-squared:                  0.945
Method:                 Least Squares   F-statistic:                     52.37
Date:                Tue, 11 Jul 2023   Prob (F-statistic):             0.0186
Time:                        12:17:27   Log-Likelihood:                 21.418
No. Observations:                   4   AIC:                            -38.84
Df Residuals:                       2   BIC:                            -40.06
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept     -0.0282      0.005     -5.190      0.035      -0.052      -0.005
gdp         8.993e-07   1.24e-07      7.237      0.019    3.65e-07    1.43e-06
==============================================================================
Omnibus:                          nan   Durbin-Watson:                   3.069
Prob(Omnibus):                    nan   Jarque-Bera (JB):                0.688
Skew:                          -0.913   Prob(JB):                        0.709
Kurtosis:                       2.112   Cond. No.                     2.93e+05
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 2.93e+05. This might indicate that there are
strong multicollinearity or other numerical problems.
/usr/lib/python3/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning: omni_normtest is not valid with less than 8 observations; 4 samples were given.
  warn("omni_normtest is not valid with less than 8 observations; %i "
In [68]:
print(res.params)
Intercept   -2.816655e-02
gdp          8.993165e-07
dtype: float64
In [69]:
ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, res.params[1]*x+res.params[0])
plt.title("refugees fraction vs. gdp")
plt.show()

Appendix: Selecting from DataFrames¶

Accessing Rows¶

Passing a single value to loc returns a Series

In [70]:
frame.loc["a"]
Out[70]:
primes    11
fibo       1
0-4        0
Name: a, dtype: int64

Passing a list to loc returns a DataFrame (even if the list contains a single a single value)

In [71]:
frame.loc[["a"]]
Out[71]:
primes fibo 0-4
a 11 1 0
In [72]:
frame.loc[["a","c"]]
Out[72]:
primes fibo 0-4
a 11 1 0
c 17 2 2

Also slicing works (but includes the upper boundary)

In [73]:
frame.loc["b":"d"]
Out[73]:
primes fibo 0-4
b 13 1 1
c 17 2 2
d 19 3 3

A list of boolean values with n-Rows entries, is considered a mask to select rows

In [74]:
frame.loc[[True,False,True,False,True]]
Out[74]:
primes fibo 0-4
a 11 1 0
c 17 2 2
e 23 5 4

Instead of a list, a boolean-series can be used. Rows are matched on the index. (frame[["primes"]] > 20 would not work as this returns a frame instead of a series.)

In [75]:
frame.loc[frame["primes"] > 20]
Out[75]:
primes fibo 0-4
e 23 5 4

When using a mask, .loc is optional (but recommended to avoid confusion with columns).

In [76]:
frame[frame["primes"] > 20]
Out[76]:
primes fibo 0-4
e 23 5 4

Using iloc it is possible to access rows by position as well. (without using the index)

In [77]:
frame.iloc[2:-1]
Out[77]:
primes fibo 0-4
c 17 2 2
d 19 3 3

Accessing Columns¶

The frame is subscripted directly. Again, passing a singel value returns a series.

In [78]:
frame["primes"]
Out[78]:
a    11
b    13
c    17
d    19
e    23
Name: primes, dtype: int64

While a list returns a DataFrame

In [79]:
frame[["primes"]]
Out[79]:
primes
a 11
b 13
c 17
d 19
e 23
In [80]:
frame[["primes","0-4"]]
Out[80]:
primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

Instead of subscripting, the get-method can be used.

In [81]:
frame.get(["primes","0-4"])
Out[81]:
primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

For single columns, an attribute with the same name exists

In [82]:
frame.primes
Out[82]:
a    11
b    13
c    17
d    19
e    23
Name: primes, dtype: int64

But this fails, if the column-name is not a valid attribute-name

In [83]:
# Raises SyntaxError
#frame.0-4

For even more options have a look at the pandas-website: https://pandas.pydata.org/pandas-docs/stable/indexing.html