Nicola Chiapolini & Christian Elsasser, June 27, 2025

1

Useful Modules
Scientific Programming with Python

Nicola Chiapolini & Christian Elsasser

University of Zurich
Faculty of Science

June 27, 2025

® @ This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini & Christian Elsasser, June 27, 2025 2129

General

General

Nicola Chiapolini & Christian Elsasser, June 27, 2025 3/29

difflib

» find differences between two sequences or strings

import difflib bacon
egg
start = ("bacon", "egg", "ham", "cheese") - ham
end = ["bacon", "egg", "spam", "cheese'] + spam
diff = difflib.ndiff (start, end) cheese
for line in diff:
print(line)
» calculate how close two sequences or strings are
options=["hannah", "anna", "hanna", "andrea", "maria" ['hanna', 'hannah', 'anna']
close difflib.get_close_matches("hana", options) [(2, 3, 4), (1, 2, 3)]

print(close)

options=[(1,2,3),(2,3,4),(3,4,5),(3,2,1)]
close = difflib.get_close_matches([2,3], options)
print(close)

Nicola Chiapolini & Christian Elsasser, June 27, 2025 29

glob

» find files on file system

import glob tree/subdir
tree/fileA
matches = glob.glob("tree/*") tree/fileB.py

print("\n".join(matches))

tree/fileB.py
print("") tree/subdir/filel.py
matches = glob.glob("tree/**/*.py", recursive=True)
print ("\n".join(matches))

» you might be interested in os.walk as well

import os ('tree', ['subdir'], ['fileA', 'fileB.py'])
('tree/subdir', [], ['file2', 'filel.py'])
tree = os.walk("tree")
for entry in tree:
print (entry)

Nicola Chiapolini & Christian Elsasser, June 27, 2025 29

Data Types

Data Types

Nicola Chiapolini & Christian Elsasser, June 27, 2025
Data Types

datetime

» proper representation of dates and times
import datetime as dt 2017-09-11 13:15:00

t1l = dt.datetime(2017,9,11,13,15)
print(t1)

» reading and formatting of strings

t2 = dt.datetime.strptime("2017-09-11","%Y-%m-%d") 2017-09-11 00:00:00
print (t2) Sat, 13 July 2024 17:50

t3 = dt.datetime.now()
print (t3.strftime("%a, %d %B %Y %H:%M"))

Nicola Chiapolini & Christian Elsasser, June 27, 2025

» including timezones

tz_cest = dt.timezone(dt.timedelta(hours=+2))
t2 = dt.datetime(2017,9,11,13,15,tzinfo=tz_cest)
print (t2)

Hour in UTC
print("no tzinfo: ", tl.utctimetuple().tm_hour)
print("with tzinfo:", t2.utctimetuple().tm_hour)

» proper representation of dates and times
import pytz

zurich = pytz.timezone('Europe/Zurich')
sydney = pytz.timezone('Australia/Sydney')

29

Data Types

datetime (cont.)

2017-09-11 13:15:00+02:00
no tzinfo: 13
with tzinfo: 11

2018-03-11 19:00:00+01:00
2018-03-12 05:00:00+11:00
True

zurich_dt = zurich.localize(dt.datetime(2018, 3, 11, 19, 0))

print(zurich_dt)
sydney_dt = zurich_dt.astimezone(sydney)
print (sydney_dt)

print (zurich_dt==sydney_dt)

Nicola Chiapolini & Christian Elsasser, June 27, 2025 8/29

datetime (cont.)

» timedelta allows to do calculations

feb24 = dt.date(2024, 2, 28) 2024-02-29
feb25 = dt.date(2025, 2, 28) 2025-03-01
tdelta = dt.timedelta(days=1)

print (feb24+tdelta)

print (feb25+tdelta)

» alot of useful functions: e.g. random date in interval
import random 1990-12-05

start = dt.date(1990, 1,1,).toordinal()

end = dt.date(2000, 1,1,).toordinal()

rand = dt.date.fromordinal (random.randint(start, end))
print (rand)

an Elsasser, June 27.

Data Types

enum

> represent a set of possible values

from enum import StrEnum southwest
False

class Compass(StrEnum) :

n = "north"

ne = "northeast"

e = "east"

se = "southeast"

s = "south"

sw = "southwest"

w = "west"

nw = "northwest"

print (Compass.sw)
print (Compass("north") == Compass.e)
#print (Compass ("osten")) # ValueError

Nicola Chiapolini & Christian Elsasser, June 27, 2025

Data Types

dataclasses

> represent structured data

from dataclasses import dataclass
import datetime

@dataclass

class Article:
title: str
authors: list[str]
date: datetime.date
url: str

dna = Article(

""iolecular Structure of Nucleic Acids:
4 Structure for Deoxyribose Nucleic Acid""",

["Watson, J. D.", "Crick, F. H. C."],
datetime.date (1953, 4, 25),
"https://doi.org/10.1038/171737a0",

print(dna.title)

Molecular Structure of Nucleic Acids:
A Structure for Deoxyribose Nucleic Acid

Nicola Chiapolini & Christian Elsasser, June 27, 2025 11/29

Functional Tools

Functional Tools

Nicola Chiapolini & Christian Elsasser, June 27, 2025 12/29

Functional Tools

itertools

» lots of tools to work with sequences
» chain sequences

from itertools import chain, cycle, permutations (A, 'B', 'C', 'D', 'E', 'F']

res = [v for v in chain('ABC', 'DEF')]
print(res)

» infinitly cycle sequences
gen = cycle('ABC') ['A', 'B', 'C', 'A', 'B']
print ([next(gen) for _ in range(5)])

» generate all permutations

res = ["".join(v) for v in permutations('ABC')] ['ABC', 'ACB', 'BAC', 'BCA', 'CAB', 'CBA']
print(res)

Nicola Chiapolini & Christian Elsasser, June 27, 2025 13/29

Settings and User Input

Settings and User Input

Nicola Chiapolini & Christian Elsasser, June 27, 2025 14/29

Settings and User Input

argparse

» Parse commandline arguments to adjust programm execution easily

#!/usr/bin/env python3
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument ("integers", metavar="N", type=int, nargs="+",
help="an integer for the accumulator")
parser.add_argument ("--sum", dest="accumulate", action="store_const",
const=sum, default=max,
help="sum the integers (default: find the max)")
args = parser.parse_args()

print (args.accumulate(args.integers))

./argparsedemo.py 1 2 3 4

./argparsedemo.py --sum 1 2 3 4

9

Settings and User Input

click

Nicola Chiapolini & Christian Elsasser, June 27, 2025

» Makes writing CLI (Command Line Interfaces) even easier.

#!/usr/bin/env pythond
""" Process some integers.
import click

nin

@click.command()
Qclick.argument ("integers", type=int, nargs=-1, required=True)
Qclick.option("--sum/--max", "-s/-m", "sum_", default=False, help="use sum or max (default: max)")
def process(sum_, integers):
accumulator = max
if sum_:
accumulator = sum
print (accumulator (integers))
if __name__ == "__main__":
pylint: disable=no-value-for-parameter
process()

$./clickdemo.py --sum 1 2 3 4
10

Nicola Chiapolini & Christian Elsasser, June 27, 2025 29

Settings and User Input

configparser

» Load configuration from files.

import configparser [setup]
sum = True
conf = configparser.ConfigParser()
conf.read(["config.ini"]) [values]
ints = 1,2,3
accumulator = max
if conf["setup"].getboolean("sum", False):
accumulator = sum

integers = [
int(v) for v in (conf["values"]["ints"]).split(",")

]

print (accumulator (integers))

Nicola Chiapolini & Christian Elsasser, June 27, 2025 17/29

Settings and User Input

readline

» improve user experience for interactive input

import readline

while True: DemO

name = input("Your Name: ")
print ("Hello", name)

» uses GNU readline, only available on Linux and Mac
» only incomplete windows alternatives seem to exist

Nicola Chiapolini & Christian Elsass

Output

Nicola Chiapolini & Christian Elsasser, June 27, 2025

logging

» control output verbosity
import logging

logging.basicConfig(
format="'Y%(levelname)s - %(name)s - %(message)s',
level=logging.WARNING # this is the default
)

recommended setup, works well with imports
logger = logging.getLogger (__name__)

logger.debug("This output is only for debugging")
logger.error("There was an error.")

ERROR -

__main__

- There was an error.

Nicola Chiapolini & Christian Elsasser, June 27, 2025

logging (cont.)

» detailed control of output

log = logging.getLogger (__name__)

set lowest log-level, handlers can only
increase threshold/reduce verbosity
log.setLevel(logging.DEBUG)

add an output-channel for stderr
log.addHandler (logging.StreamHandler())
reduce ouput for last handler
log.handlers[-1].setLevel(logging.ERROR)

create and configure output to a file
(use "a" instead of "w" to append)
logfile = logging.FileHandler("demo.log", "w")

define format ouf Log-lines

- see ‘pydoc3 logging.Formatter”™ for wariables
- extra variables (e.g. “/(var)s’) must be passed

via keyword argument ‘extra’
logfile.setFormatter (logging.Formatter (

log.error("This is bad", extra={"var": 42})
log.info("Info: %s", "busy", extra={"var": 0})

console:
This is bad
logfile

2024-07-13 17:50:00,152 -- ERROR, 42: This is bad
2024-07-13 17:50:00,152 -- INFO, O: Info: busy

"%(asctime)s -- %(levelname)s, %(var)s: %(message)s"

)
log.addHandler (logfile)

an Elsasser, June 27.

textwrap

» wrapping and filling text

import textwrap

text = """This is an example
text that should be rewrapped
into longer lines, ignoring any

newlines in the original.
win

res = textwrap.fill(text, width=30)
print(res)

print ()

res = textwrap.indent(res, prefix=' # ')
print(res)

This is an example text that
should be rewrapped into
longer lines, ignoring any
newlines in the original.

This is an example text that
should be rewrapped into

longer lines, ignoring any

newlines in the original.

Nicola Chiapolini & Christian Elsasser, June 27, 2025 22/29

texttable

» output tables to terminal

from texttable import Texttable Fommto—o- Fommme- +
| n | 2%n | n**2 |

output = Texttable(max_width=30) Fom et e +
output.set_cols_align(["1", "r", "r"]) | 0| 0| 0|
output.add_row(["n", "2*n", "n¥*2"]) Fomto oo i +
for n in range(5): 1| 2 | 1|
output.add_row([n, 2*n, n**2]) e Fommm- +
print (output.draw()) 21 41 4 |
ot oo +

| 31 6 | 9 |

Fom et Fom——— +

|41 8] 16 |

oo oo Fommmmm +

Nicola Chiapolini & Christian Elsasser, June 27, 2025 23/29

Interacting with the Web

Interacting with the Web

Nicola Chiapolini & Christian Elsasser, June 27, 2025 24/29

Interacting with the Web

requests

» interact with things reachable over the internet
> http get requests: e.g. fetching a website

import requests <!DOCTYPE html>
<html lang="de" data-template="ct01">
url = "https://www.uzh.ch" <head>
response = requests.get(url) <meta charset="utf-8">
response.raise_for_status() <meta name="viewport" content="width=device-width,

lines = response.text.split("\n")

lines = [1 for 1 in lines if 1l.strip() != ""]
for line in lines[:5]:
print(line)

» http post requests: e.g. filling a form

res = requests.post(Status: 200
"https://httpbin.org/post",
data={"user": "me", "pass": "secrete"}
)

print("Status:", res.status_code)

Nicola Chiapolini & Christian Elsasser, June 27, 2025 29

bs4 / 1xml

> extract elements from XML/HTML documents: e.g. links

from bs4 import BeautifulSoup https://www.uzh.ch

/cmsssl/de/search.html
content = BeautifulSoup(response.text,"lxml") https://www.students.uzh.ch
links = content.find_all(name="a") # by tag name https://www.staff.uzh.ch
#links = content.select("a.Link") # by css selector /cmsssl/de.html

for link in links[:5]:
print (link["href"])

» alternative option 1xml

import lxml.html https://www.uzh.ch

/cmsssl/de/search.html
content = 1lxml.html.fromstring(response.text) https://www.students.uzh.ch
links = content.findall(".//a") # by zpath https://www.staff.uzh.ch
for link in links[:5]: /cmsssl/de.html

print(link.get("href"))

Nicola Chiapolini & Christian Elsasser, June 27, 2025 26/29

Interacting with the Web

selenium

» remote control a real browser (for JavaScript and other dynamic content)

from selenium import webdriver
from selenium.webdriver.chrome.service import Service

driver = webdriver.Chrome (DemO
service=Service("/usr/bin/chromedriver")
)

driver.get ("https://www.uzh.ch")
driver.find_elements("tag name", "a")
driver.find_elements("tag name", "a")[-1].click()

Nicola Chiapolini & Christian Elsasser, June 27, 2025 27/29

Running External Commands

Running External Commands

Nicola Chiapolini & Christian Elsasser, June 27, 2025 28/29

Running External Commands

subprocess

» run external command

import subprocess x86_64 GNU/Linux

res: CompletedProcess(args=['uname', '-om'], returncode
result = subprocess.run(["uname", "-om"])
print("res:", result)

» capture output to access it from python

result = subprocess.run(

["uname", "-om"], x86_64 GNU/Linux
capture_output=True
) [

print(n___u)

print(result.stdout.decode())
print("---")

Nicola Chiapolini & Christian Elsasser, June 27, 2025 29

Running External Commands

subprocess (cont.)

» metacharacters are not interpreted unless shell=True

ext = "py" capture.py
res = subprocess.run(run.py
[£"1s -1 *.{ext}"], # single element shell.py
shell=True # RISKY! stdin.py
)
using: Demo

ezt = input("ext: ")
creates a shell injection wvulnerability

> pass data to standard input with input=. ..

data = """# A title <hl id="a-title">A title</h1>
And a simple paragraph <p>And a simple paragraph with some text.</p>
with some text.
win
res = subprocess.run(["pandoc", "-t", "html"],
input=data.encode()

)

	General
	Data Types
	Functional Tools
	Settings and User Input
	Output
	Interacting with the Web
	Running External Commands

