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Setting the scene

Object-oriented programming is a programming paradigm.

▶ Imperative programming
▶ Object-oriented
▶ Procedural

▶ Declarative programming
▶ Functional
▶ Logic
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What is Object-Oriented Programming?

Segment programs into instances of different object classes:
▶ Instance variables to describe the state of the object
▶ Methods to model the behaviour of the object

A class definition is like a blueprint. Programs create instances and execute
their methods.
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Why might OOP be a good idea?

DRY (Don’t repeat yourself):

Create class functionality once, use
repeatedly across programs.
Inheritance allows easy creation of new classes
by extending existing ones.

KIS (Keep it simple):

Split functionality into basic building blocks and
algorithms invoking them. This creates a
natural code structure.

Complex problems require more than single instruction sequences for maintainable code.
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Example of a class

class Dog:
def __init__(self, color="brown"):

self.color = color

def make_sound(self):
print("Wuff!")

# create an instance 'snoopy' of the class Dog
snoopy = Dog()

# first argument (self) is this Dog instance
snoopy.make_sound()

# change snoopy's color
snoopy.color = "yellow"

▶ Start with class keyword.
▶ Methods: functions in class scope with self

as first argument.
▶ __init__: called when creating new

instances.
▶ Data attributes are defined in __init__.
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Fundamental Principles of OOP (I)

Encapsulation
▶ Expose only necessary parts (public

interface).
▶ Hide implementation details for abstraction.
▶ Break large problems into understandable

parts.

In Python:
▶ No explicit private/public declarations.
▶ Convention: private parts start with _.
▶ Uses documentation and conventions

instead of enforcement.
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Example of Encapsulation

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self.make_sound()

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

def pat(self):
self._change_mood(1)

def beat(self):
self._change_mood(-2)

▶ Use pat and beat methods to change mood.
▶ Don’t access _mood or _change_mood

directly.
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Fundamental Principles of OOP (II)

Inheritance
▶ Create subclasses that inherit/extend

parent classes.
▶ Override methods, add specialized behavior.

In Python:
▶ Inherit from one/multiple classes (multiple

not recommended).
▶ Access parent methods via super.
▶ All classes derive from object (implicit).
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Example of Inheritance

class Mammal:
def __init__(self, color="grey"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self.make_sound()

def make_sound(self):
raise NotImplementedError

def pat(self):
self._change_mood(1)

def beat(self):
self._change_mood(-2)

from mammal import Mammal

class Dog(Mammal):
def __init__(self, color="brown"):

super().__init__(color)

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

▶ super().__init__(color): calls parent
constructor.

▶ super: accesses parent class methods.
▶ Used when extending parent methods.
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Fundamental Principles of OOP (III)

Polymorphism
▶ Treat subclasses like parent class,

execute specialized behavior.
▶ Example: All mammals make sounds; dogs

bark.

In Python:
▶ Python is a dynamically typed language:

the type (class) of a variable
is only known when the code runs.

▶ Duck Typing: No need to know class of
object if it provides the required methods:
“If it looks like a duck, swims like a duck, and
quacks like a duck, then it probably is a
duck.” (and we treat it as a duck)

▶ Type checking can be performed via
the isinstance function, but generally prefer
duck typing and polymorphism.
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Example of Polymorphism

from animals import Dog, Cat, Bear

def caress(mammal, number_of_pats):
if isinstance(mammal, Bear):

raise TypeError("Bad Idea!")
for _ in range(number_of_pats):

mammal.pat()

d, c, b = Dog(), Cat(), Bear()
caress(d, 3) # "Wuff!" (3x)
caress(c, 3) # "Purr!" (3x)
caress(b, 3) # raises TypeError

▶ caress works for all objects having a method
pat

▶ Special behaviour for bears:
use isinstance(mammal, Bear) to check if
mammal is a bear.

▶ Dynamic typing makes function overloading
like in other languages impossible!
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Python Specialities – Magic Methods

class Dog:
def __init__(self, name, color="brown"):

self.name = name
self.color = color
self._mood = 5

def __repr__(self):
return f"{self.name}: {self.color} dog"

snowy = Dog("snowy", "white")
print(snowy) # snowy: white dog

▶ Magic methods (full list here) start and end
with two underscores (“dunder”).

▶ They customise standard Python behavior
(e.g. string representation or operator
definition).

https://docs.python.org/3/reference/datamodel.html#special-method-names
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Python Specialities – Property

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

def _get_mood(self):
if self._mood < 0:

return "angry"
else:

return "happy"

mood = property(_get_mood)

# create an instance 'snowy' of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)

▶ property() has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

▶ Access calculated values like data attributes.
▶ Create read-only attributes.
▶ Preprocess assigned values (see later).
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Python Specialities – Property

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

@property
def mood(self):

if self._mood < 0:
return "angry"

else:
return "happy"

# create an instance 'snowy' of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)

▶ property() has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

▶ Access calculated values like data attributes.
▶ Create read-only attributes.
▶ Preprocess assigned values (see later).
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Python Specialities – Classmethods

class Dog:
def __init__(self, name, color="brown"):

self.name = name
self.color = color

@classmethod
def from_string(cls, s):

name, *color = s.split(",")
if not color or type(color) != str:

return cls(name)
return cls(name, color)

snowy = Dog.from_string("snowy,white")

▶ A classmethod takes as its first argument a
class instead of an instance of the class. It is
therefore called cls instead of self.

▶ One usecase is to write multiple
constructors for a class, e.g.:
▶ Default __init__.
▶ From serialized string.
▶ From database/file.

▶ Other usecases
▶ Keep track/update existing objects (changes

class variable).
▶ Instance-independent methods
▶ . . .
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Python Specialities – Class attributes

class Dog:
breed = "dog"
all_ = set()

def __init__(self, name, color="brown"):
self.name = name
self.color = color
Dog.all_.add(self)

def __repr__(self):
return f"{self.name}: {self.color} {self.breed}"

Dog("snowy", "white")
balto = Dog("balto")
balto.breed = "husky"
print(Dog.all_) # {snowy: white dog, balto: brown husky}

▶ A class can also have attributes that are
shared among all its objects.

▶ If the attribute is modified, all objects will see
this ("class global").

▶ Pitfall assignment: Assigning to an
instance (balto.breed = "husky"), creates
a new instance attribute, hiding the class
one. You need the class to modify the class
attribute (type(balto).breed = "canis")
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Advanced OOP Techniques

There are many advanced techniques that we didn’t cover:
▶ Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to understand the

Method Resolution Order (MRO) to understand super.
▶ Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.
▶ Abstract Base Classes: Enforce that derived classes implement particular methods from the base

class.
▶ Metaclasses: (derived from type), their instances are classes.

▶ Great way to overcomplicate when feeling clever.
▶ Avoid these - you’ll likely regret it (KIS).
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Science Examples – Vector

class Vector3D:
def __init__(self, x, y, z):

self.x, self.y, self.z = x, y, z

def __add__(self, other):
return type(self)(self.x + other.x,

self.y + other.y,
self.z + other.z)

@property
def length(self):

return (self.x**2+self.y**2
+self.z**2)**0.5

@length.setter
def length(self, length):

scale = length/self.length
self.x *= scale; self.y *= scale; self.z *= scale

# decorators could be replaced by `length = property(....)`
# but functions would need distinguishable names

from vector import Vector3D

v1 = Vector3D(0, 1, 2)
v2 = Vector3D(1,-3, 0)
v3 = v1 + v2
print(v3.length) # 3.0
v3.length = 6
print(v3.x, v3.y, v3.z)

▶ Custom type with optimized
behavior.

▶ Custom functionality.
▶ type(self) in __add__: simplifies

inheritance.
▶ @length.setter: marks property

setter.
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Science Examples – Dataset

import numpy as np

class Dataset:
mandatory_metadata = ["label", "color", "marker"]
def __init__(self, datafile, **metadata):

for key in self.mandatory_metadata:
if key not in metadata:

raise KeyError("Missing metadata", key)
self.metadata = metadata
self.data = np.loadtxt(datafile, delimiter=",")
self.validate()

def validate(self):
if self.data.shape != (4, 10):

raise ValueError("Bad shape of data, has to be (4, 10).")

@property
def label(self):

return self.metadata["label"]

def peak_row(self):
return self.data.max(axis=1).argmax()

from dataset import Dataset

ds = Dataset("data_0.csv",
label="calibration",
color="r",
marker="+")

print(ds.label)

▶ Store metadata with data.
▶ Data validation on load.
▶ Calculate derived quantities.
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Science Examples – Sensors

from urllib.request import urlopen

class Sensor:
def __init__(self, offset=0, scale_factor=1):

self.offset = offset
self.scale = scale_factor

def get_value(self):
return (self._get_raw() + self.offset) * self.scale

def _get_raw(self):
raise NotImplementedError

class WebSensor(Sensor):
def __init__(self, url, *args, **kwargs):

super().__init__(*args, **kwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)
return float(res.read())

from sensors import WebSensor

sensor = WebSensor(
"https://crbn.ch/sensor", 273
)

print(sensor.get_value())

▶ Combine configuration with
functionality.

▶ Support different sensor access
methods.
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Science Examples – Value with Uncertainty

class UncertVal:
def __init__(self, value, uncertainty=0):

self.val = value
self.std = uncertainty

def __str__(self):
return f"{self.val} +/- {self.std}"

def add(self, other, corr=0):
variance = (self.std ** 2 + other.std ** 2

+ 2 * self.std * other.std * corr)
return type(self)(self.val + other.val,

variance ** 0.5)

def __add__(self, other):
return self.add(other)

from uncertval import UncertVal

a = UncertVal(2, 0.3)
b = UncertVal(3, 0.4)
print(a + b) # 5 +/- 0.5

▶ Group related values.
▶ Useful string representation.
▶ Operators respect value

relationships.
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Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right:
▶ Rule of three: Third repetition → create

class/function.
▶ Sketch with pen and paper.
▶ Be pragmatic, not perfectionist about

real-world correspondence.
▶ Testability: good design criterion.

How design principles can help:
▶ Design principles tell you in an abstract way

what a good design should look like (most
come down to loose coupling).

▶ Design Patterns are concrete solutions for
reoccurring problems.
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Some Design Principles

Scope of classes:
▶ One class = one single clearly defined

responsibility.
▶ Favor composition over inheritance.

Inheritance is not primarily intended for
code reuse, its main selling point is
polymorphism. “Do I want to use these
subclasses interchangeably?”

▶ Separate varying aspects from stable
ones.
Open for extension, closed for modification.

How to design (programming) interfaces:
▶ Principle of least knowledge.

Each unit should have only limited
knowledge about other units. Only talk to
your immediate friends.

▶ Minimize the surface area of the interface.
▶ Program to an interface, not an

implementation. Do not depend upon
concrete classes.
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Design Patterns

Purpose & background:
▶ Idea of concrete design approach for

recurring problems.
▶ Closely related to the rise of the traditional

OOP languages C++ and Java.
▶ More important for compiled languages

(Open-Closed principle stricter!) and those
with stronger enforcement of encapsulation.

Examples:
▶ Decorator pattern
▶ Strategy pattern
▶ Factory pattern
▶ . . .

Comprehensive list here.

https://en.wikipedia.org/wiki/Software_design_pattern
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Decorator Pattern
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Decorator Pattern – Motivation

Challenge:
▶ How to modify the behaviour of an individual

object . . .
▶ . . . and allowing for multiple modifications.

Example: Implement a range of products of a
coffee house chain

But what about the beloved add-ons?

(Do not confuse the decorator pattern with
function decorators!)

class Beverage:
# imagine some attributes like
# temperature, amount left,...
_name = "beverage"
_cost = 0.00

def __str__(self):
return self._name

@property
def cost(self):

return self._cost

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class Tea(Beverage):
_name = "tea"
...
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Decorator Pattern – First try

Solution:
▶ Implementation via subclasses

Issue: Number of subclasses explodes to allow
for multiple modifications (e.g.
CoffeeWithMilkAndSugar).

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class CoffeeWithMilk(Coffee):
_name = "coffee with milk"
_cost = 3.30

class CoffeeWithSugar(Coffee):
_name = "coffee with sugar"
...
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Decorator Pattern – Second try

Solution:
▶ Implementation with switches

Issue: No additional add-ons implementable
without changing the class (violation of the
open-close principle!).

class Beverage:
_name = "beverage"
_cost = 0.00

def __init__(self, milk=False, sugar=False):
self._milk = milk
self._sugar = sugar

def __str__(self):
desc = self._name
if self._milk:

desc += ", with milk"
if self._sugar:

desc += ", with sugar"
return desc

@property
def cost(self):

cost = self._cost
if self._milk:

cost += 0.30
if self._sugar:

cost += 0.20
return cost
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Decorator Pattern – Implementation

Solution:
▶ Create a class that wraps a beverage and

behaves like a beverage itself. (i.e.
implements the beverage interface)

▶ Possibility to create a chain of decorators.
▶ Composition solves the problem.
▶ Downside: Need to implement all functions

of beverage even if they do not need to be
changed.

class Milk:
def __init__(self, beverage):

self.base = beverage

def __str__(self):
return f"{self.base}, with milk"

@property
def cost(self):

return self.base.cost + 0.30

coffee_with_milk = Milk(Coffee())
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Strategy Pattern
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Strategy Pattern – Motivation (I)

Let’s implement a duck . . .
class Duck:

def __init__(self):
# stateless class for simplicity
pass

def quack(self):
print("Quack!")

def display(self):
print("Boring looking duck.")

def take_off(self):
print("Run fast, flap wings.")

def fly_to(self, destination):
print("Fly to", destination)

def land(self):
print("Extend legs, touch down.")
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Strategy Pattern – Motivation (II)

. . . and different types of ducks!

Oh, no! The rubber duck should not
fly! We need to overwrite all the
methods about flying.
▶ What if we want to introduce a

DecoyDuck as well?
▶ What if a normal duck suffers a

broken wing?

⇒ It makes more sense to abstract
the flying behaviour.

class RedheadDuck(Duck):
def display(self):

print("Duck with a read head.")

class RubberDuck(Duck):
def quack(self):

print("Squeak!")

def display(self):
print("Small yellow rubber duck.")
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Strategy Pattern – Implementation (I)

▶ Create a class to describe the
flying behaviour (flying
strategy). . .

▶ . . . give Duck an instance of it . . .
▶ . . . and handle all the flying stuff

via this instance

class FlyingBehavior:
def take_off(self):

print("Run fast, flap wings.")
def fly_to(self, destination):

print("Fly to", destination)
def land(self):

print("Extend legs, touch down.")

class Duck:
def __init__(self):

self.flying_behavior = FlyingBehavior()
def take_off(self):

self.flying_behavior.take_off()
def fly_to(self, destination):

self.flying_behavior.fly_to(destination)
def land(self):

self.flying_behavior.land()
# display, quack as before...
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Strategy Pattern – Implementation (II)

▶ Other example of composition
over inheritance.

▶ Encapsulation of function
implementation in the strategy
object.

▶ Useful pattern to e.g. define
optimisation algorithm at runtime.

class NonFlyingBehavior(FlyingBehavior):
def take_off(self):

print("It's not working :-(")
def fly_to(self, destination):

raise Exception("I'm not flying.")
def land(self):

print("That won't be necessary.")

class RubberDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior()
def quack(self):

print("Squeak!")
def display(self):

print("Small yellow rubber duck.")

class DecoyDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior()
# different implementation for display/quack
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Take-aways

▶ Object-oriented programming offers a powerful paradigm to structure your code.
▶ Inheritance, design principles and patterns allow to avoid repetitions (DRY).
▶ But do not overcomplicate things and always ask yourself if applying a particular functionality makes

sense in the given context!
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