
Jonas Eschle, 23 June 2025 1 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Object-Oriented Programming
Scientific Programming with Python

Jonas Eschle

University of Zurich
Faculty of Science

23 June 2025

Contributors: Niko Wilbert, Roman Gredig, Christian Elsasser, Andreas Weiden, Jonas Eschle, Nicola Chiapolini

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Jonas Eschle, 23 June 2025 2 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Outline

What is OOP?

Fundamental Principles of OOP

Specialities in Python

Science Examples

Design Patterns

Jonas Eschle, 23 June 2025 3 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Setting the scene

Object-oriented programming is a programming paradigm.

▶ Imperative programming
▶ Object-oriented
▶ Procedural

▶ Declarative programming
▶ Functional
▶ Logic

Jonas Eschle, 23 June 2025 4 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

What is Object-Oriented Programming?

Segment programs into instances of different object classes:
▶ Instance variables to describe the state of the object
▶ Methods to model the behaviour of the object

A class definition is like a blueprint. Programs create instances and execute
their methods.

Jonas Eschle, 23 June 2025 5 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Why might OOP be a good idea?

DRY (Don’t repeat yourself):

Create class functionality once, use
repeatedly across programs.
Inheritance allows easy creation of new classes
by extending existing ones.

KIS (Keep it simple):

Split functionality into basic building blocks and
algorithms invoking them. This creates a
natural code structure.

Complex problems require more than single instruction sequences for maintainable code.

Jonas Eschle, 23 June 2025 6 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of a class

class Dog:
def __init__(self, color="brown"):

self.color = color

def make_sound(self):
print("Wuff!")

create an instance 'snoopy' of the class Dog
snoopy = Dog()

first argument (self) is this Dog instance
snoopy.make_sound()

change snoopy's color
snoopy.color = "yellow"

▶ Start with class keyword.
▶ Methods: functions in class scope with self

as first argument.
▶ __init__: called when creating new

instances.
▶ Data attributes are defined in __init__.

Jonas Eschle, 23 June 2025 7 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Fundamental Principles of OOP (I)

Encapsulation
▶ Expose only necessary parts (public

interface).
▶ Hide implementation details for abstraction.
▶ Break large problems into understandable

parts.

In Python:
▶ No explicit private/public declarations.
▶ Convention: private parts start with _.
▶ Uses documentation and conventions

instead of enforcement.

Jonas Eschle, 23 June 2025 8 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of Encapsulation

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self.make_sound()

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

def pat(self):
self._change_mood(1)

def beat(self):
self._change_mood(-2)

▶ Use pat and beat methods to change mood.
▶ Don’t access _mood or _change_mood

directly.

Jonas Eschle, 23 June 2025 9 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Fundamental Principles of OOP (II)

Inheritance
▶ Create subclasses that inherit/extend

parent classes.
▶ Override methods, add specialized behavior.

In Python:
▶ Inherit from one/multiple classes (multiple

not recommended).
▶ Access parent methods via super.
▶ All classes derive from object (implicit).

Jonas Eschle, 23 June 2025 10 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of Inheritance

class Mammal:
def __init__(self, color="grey"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self.make_sound()

def make_sound(self):
raise NotImplementedError

def pat(self):
self._change_mood(1)

def beat(self):
self._change_mood(-2)

from mammal import Mammal

class Dog(Mammal):
def __init__(self, color="brown"):

super().__init__(color)

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

▶ super().__init__(color): calls parent
constructor.

▶ super: accesses parent class methods.
▶ Used when extending parent methods.

Jonas Eschle, 23 June 2025 11 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Fundamental Principles of OOP (III)

Polymorphism
▶ Treat subclasses like parent class,

execute specialized behavior.
▶ Example: All mammals make sounds; dogs

bark.

In Python:
▶ Python is a dynamically typed language:

the type (class) of a variable
is only known when the code runs.

▶ Duck Typing: No need to know class of
object if it provides the required methods:
“If it looks like a duck, swims like a duck, and
quacks like a duck, then it probably is a
duck.” (and we treat it as a duck)

▶ Type checking can be performed via
the isinstance function, but generally prefer
duck typing and polymorphism.

Jonas Eschle, 23 June 2025 12 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of Polymorphism

from animals import Dog, Cat, Bear

def caress(mammal, number_of_pats):
if isinstance(mammal, Bear):

raise TypeError("Bad Idea!")
for _ in range(number_of_pats):

mammal.pat()

d, c, b = Dog(), Cat(), Bear()
caress(d, 3) # "Wuff!" (3x)
caress(c, 3) # "Purr!" (3x)
caress(b, 3) # raises TypeError

▶ caress works for all objects having a method
pat

▶ Special behaviour for bears:
use isinstance(mammal, Bear) to check if
mammal is a bear.

▶ Dynamic typing makes function overloading
like in other languages impossible!

Jonas Eschle, 23 June 2025 13 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Magic Methods

class Dog:
def __init__(self, name, color="brown"):

self.name = name
self.color = color
self._mood = 5

def __repr__(self):
return f"{self.name}: {self.color} dog"

snowy = Dog("snowy", "white")
print(snowy) # snowy: white dog

▶ Magic methods (full list here) start and end
with two underscores (“dunder”).

▶ They customise standard Python behavior
(e.g. string representation or operator
definition).

https://docs.python.org/3/reference/datamodel.html#special-method-names

Jonas Eschle, 23 June 2025 14 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Property

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

def _get_mood(self):
if self._mood < 0:

return "angry"
else:

return "happy"

mood = property(_get_mood)

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)

▶ property() has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

▶ Access calculated values like data attributes.
▶ Create read-only attributes.
▶ Preprocess assigned values (see later).

Jonas Eschle, 23 June 2025 14 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Property

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

@property
def mood(self):

if self._mood < 0:
return "angry"

else:
return "happy"

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)

▶ property() has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

▶ Access calculated values like data attributes.
▶ Create read-only attributes.
▶ Preprocess assigned values (see later).

Jonas Eschle, 23 June 2025 15 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Classmethods

class Dog:
def __init__(self, name, color="brown"):

self.name = name
self.color = color

@classmethod
def from_string(cls, s):

name, *color = s.split(",")
if not color or type(color) != str:

return cls(name)
return cls(name, color)

snowy = Dog.from_string("snowy,white")

▶ A classmethod takes as its first argument a
class instead of an instance of the class. It is
therefore called cls instead of self.

▶ One usecase is to write multiple
constructors for a class, e.g.:
▶ Default __init__.
▶ From serialized string.
▶ From database/file.

▶ Other usecases
▶ Keep track/update existing objects (changes

class variable).
▶ Instance-independent methods
▶ . . .

Jonas Eschle, 23 June 2025 16 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Class attributes

class Dog:
breed = "dog"
all_ = set()

def __init__(self, name, color="brown"):
self.name = name
self.color = color
Dog.all_.add(self)

def __repr__(self):
return f"{self.name}: {self.color} {self.breed}"

Dog("snowy", "white")
balto = Dog("balto")
balto.breed = "husky"
print(Dog.all_) # {snowy: white dog, balto: brown husky}

▶ A class can also have attributes that are
shared among all its objects.

▶ If the attribute is modified, all objects will see
this ("class global").

▶ Pitfall assignment: Assigning to an
instance (balto.breed = "husky"), creates
a new instance attribute, hiding the class
one. You need the class to modify the class
attribute (type(balto).breed = "canis")

Jonas Eschle, 23 June 2025 17 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Advanced OOP Techniques

There are many advanced techniques that we didn’t cover:
▶ Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to understand the

Method Resolution Order (MRO) to understand super.
▶ Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.
▶ Abstract Base Classes: Enforce that derived classes implement particular methods from the base

class.
▶ Metaclasses: (derived from type), their instances are classes.

▶ Great way to overcomplicate when feeling clever.
▶ Avoid these - you’ll likely regret it (KIS).

Jonas Eschle, 23 June 2025 18 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Vector

class Vector3D:
def __init__(self, x, y, z):

self.x, self.y, self.z = x, y, z

def __add__(self, other):
return type(self)(self.x + other.x,

self.y + other.y,
self.z + other.z)

@property
def length(self):

return (self.x**2+self.y**2
+self.z**2)**0.5

@length.setter
def length(self, length):

scale = length/self.length
self.x *= scale; self.y *= scale; self.z *= scale

decorators could be replaced by `length = property(....)`
but functions would need distinguishable names

from vector import Vector3D

v1 = Vector3D(0, 1, 2)
v2 = Vector3D(1,-3, 0)
v3 = v1 + v2
print(v3.length) # 3.0
v3.length = 6
print(v3.x, v3.y, v3.z)

▶ Custom type with optimized
behavior.

▶ Custom functionality.
▶ type(self) in __add__: simplifies

inheritance.
▶ @length.setter: marks property

setter.

Jonas Eschle, 23 June 2025 19 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Dataset

import numpy as np

class Dataset:
mandatory_metadata = ["label", "color", "marker"]
def __init__(self, datafile, **metadata):

for key in self.mandatory_metadata:
if key not in metadata:

raise KeyError("Missing metadata", key)
self.metadata = metadata
self.data = np.loadtxt(datafile, delimiter=",")
self.validate()

def validate(self):
if self.data.shape != (4, 10):

raise ValueError("Bad shape of data, has to be (4, 10).")

@property
def label(self):

return self.metadata["label"]

def peak_row(self):
return self.data.max(axis=1).argmax()

from dataset import Dataset

ds = Dataset("data_0.csv",
label="calibration",
color="r",
marker="+")

print(ds.label)

▶ Store metadata with data.
▶ Data validation on load.
▶ Calculate derived quantities.

Jonas Eschle, 23 June 2025 20 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Sensors

from urllib.request import urlopen

class Sensor:
def __init__(self, offset=0, scale_factor=1):

self.offset = offset
self.scale = scale_factor

def get_value(self):
return (self._get_raw() + self.offset) * self.scale

def _get_raw(self):
raise NotImplementedError

class WebSensor(Sensor):
def __init__(self, url, *args, **kwargs):

super().__init__(*args, **kwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)
return float(res.read())

from sensors import WebSensor

sensor = WebSensor(
"https://crbn.ch/sensor", 273
)

print(sensor.get_value())

▶ Combine configuration with
functionality.

▶ Support different sensor access
methods.

Jonas Eschle, 23 June 2025 21 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Value with Uncertainty

class UncertVal:
def __init__(self, value, uncertainty=0):

self.val = value
self.std = uncertainty

def __str__(self):
return f"{self.val} +/- {self.std}"

def add(self, other, corr=0):
variance = (self.std ** 2 + other.std ** 2

+ 2 * self.std * other.std * corr)
return type(self)(self.val + other.val,

variance ** 0.5)

def __add__(self, other):
return self.add(other)

from uncertval import UncertVal

a = UncertVal(2, 0.3)
b = UncertVal(3, 0.4)
print(a + b) # 5 +/- 0.5

▶ Group related values.
▶ Useful string representation.
▶ Operators respect value

relationships.

Jonas Eschle, 23 June 2025 22 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right:
▶ Rule of three: Third repetition → create

class/function.
▶ Sketch with pen and paper.
▶ Be pragmatic, not perfectionist about

real-world correspondence.
▶ Testability: good design criterion.

How design principles can help:
▶ Design principles tell you in an abstract way

what a good design should look like (most
come down to loose coupling).

▶ Design Patterns are concrete solutions for
reoccurring problems.

Jonas Eschle, 23 June 2025 23 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Some Design Principles

Scope of classes:
▶ One class = one single clearly defined

responsibility.
▶ Favor composition over inheritance.

Inheritance is not primarily intended for
code reuse, its main selling point is
polymorphism. “Do I want to use these
subclasses interchangeably?”

▶ Separate varying aspects from stable
ones.
Open for extension, closed for modification.

How to design (programming) interfaces:
▶ Principle of least knowledge.

Each unit should have only limited
knowledge about other units. Only talk to
your immediate friends.

▶ Minimize the surface area of the interface.
▶ Program to an interface, not an

implementation. Do not depend upon
concrete classes.

Jonas Eschle, 23 June 2025 24 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Design Patterns

Purpose & background:
▶ Idea of concrete design approach for

recurring problems.
▶ Closely related to the rise of the traditional

OOP languages C++ and Java.
▶ More important for compiled languages

(Open-Closed principle stricter!) and those
with stronger enforcement of encapsulation.

Examples:
▶ Decorator pattern
▶ Strategy pattern
▶ Factory pattern
▶ . . .

Comprehensive list here.

https://en.wikipedia.org/wiki/Software_design_pattern

Jonas Eschle, 23 June 2025 25 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern

Jonas Eschle, 23 June 2025 26 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – Motivation

Challenge:
▶ How to modify the behaviour of an individual

object . . .
▶ . . . and allowing for multiple modifications.

Example: Implement a range of products of a
coffee house chain

But what about the beloved add-ons?

(Do not confuse the decorator pattern with
function decorators!)

class Beverage:
imagine some attributes like
temperature, amount left,...
_name = "beverage"
_cost = 0.00

def __str__(self):
return self._name

@property
def cost(self):

return self._cost

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class Tea(Beverage):
_name = "tea"
...

Jonas Eschle, 23 June 2025 27 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – First try

Solution:
▶ Implementation via subclasses

Issue: Number of subclasses explodes to allow
for multiple modifications (e.g.
CoffeeWithMilkAndSugar).

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class CoffeeWithMilk(Coffee):
_name = "coffee with milk"
_cost = 3.30

class CoffeeWithSugar(Coffee):
_name = "coffee with sugar"
...

Jonas Eschle, 23 June 2025 28 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – Second try

Solution:
▶ Implementation with switches

Issue: No additional add-ons implementable
without changing the class (violation of the
open-close principle!).

class Beverage:
_name = "beverage"
_cost = 0.00

def __init__(self, milk=False, sugar=False):
self._milk = milk
self._sugar = sugar

def __str__(self):
desc = self._name
if self._milk:

desc += ", with milk"
if self._sugar:

desc += ", with sugar"
return desc

@property
def cost(self):

cost = self._cost
if self._milk:

cost += 0.30
if self._sugar:

cost += 0.20
return cost

Jonas Eschle, 23 June 2025 29 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – Implementation

Solution:
▶ Create a class that wraps a beverage and

behaves like a beverage itself. (i.e.
implements the beverage interface)

▶ Possibility to create a chain of decorators.
▶ Composition solves the problem.
▶ Downside: Need to implement all functions

of beverage even if they do not need to be
changed.

class Milk:
def __init__(self, beverage):

self.base = beverage

def __str__(self):
return f"{self.base}, with milk"

@property
def cost(self):

return self.base.cost + 0.30

coffee_with_milk = Milk(Coffee())

Jonas Eschle, 23 June 2025 30 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern

Jonas Eschle, 23 June 2025 31 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Motivation (I)

Let’s implement a duck . . .
class Duck:

def __init__(self):
stateless class for simplicity
pass

def quack(self):
print("Quack!")

def display(self):
print("Boring looking duck.")

def take_off(self):
print("Run fast, flap wings.")

def fly_to(self, destination):
print("Fly to", destination)

def land(self):
print("Extend legs, touch down.")

Jonas Eschle, 23 June 2025 32 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Motivation (II)

. . . and different types of ducks!

Oh, no! The rubber duck should not
fly! We need to overwrite all the
methods about flying.
▶ What if we want to introduce a

DecoyDuck as well?
▶ What if a normal duck suffers a

broken wing?

⇒ It makes more sense to abstract
the flying behaviour.

class RedheadDuck(Duck):
def display(self):

print("Duck with a read head.")

class RubberDuck(Duck):
def quack(self):

print("Squeak!")

def display(self):
print("Small yellow rubber duck.")

Jonas Eschle, 23 June 2025 33 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Implementation (I)

▶ Create a class to describe the
flying behaviour (flying
strategy). . .

▶ . . . give Duck an instance of it . . .
▶ . . . and handle all the flying stuff

via this instance

class FlyingBehavior:
def take_off(self):

print("Run fast, flap wings.")
def fly_to(self, destination):

print("Fly to", destination)
def land(self):

print("Extend legs, touch down.")

class Duck:
def __init__(self):

self.flying_behavior = FlyingBehavior()
def take_off(self):

self.flying_behavior.take_off()
def fly_to(self, destination):

self.flying_behavior.fly_to(destination)
def land(self):

self.flying_behavior.land()
display, quack as before...

Jonas Eschle, 23 June 2025 34 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Implementation (II)

▶ Other example of composition
over inheritance.

▶ Encapsulation of function
implementation in the strategy
object.

▶ Useful pattern to e.g. define
optimisation algorithm at runtime.

class NonFlyingBehavior(FlyingBehavior):
def take_off(self):

print("It's not working :-(")
def fly_to(self, destination):

raise Exception("I'm not flying.")
def land(self):

print("That won't be necessary.")

class RubberDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior()
def quack(self):

print("Squeak!")
def display(self):

print("Small yellow rubber duck.")

class DecoyDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior()
different implementation for display/quack

Jonas Eschle, 23 June 2025 35 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Take-aways

▶ Object-oriented programming offers a powerful paradigm to structure your code.
▶ Inheritance, design principles and patterns allow to avoid repetitions (DRY).
▶ But do not overcomplicate things and always ask yourself if applying a particular functionality makes

sense in the given context!

	What is OOP?
	Fundamental Principles of OOP
	Specialities in Python
	Science Examples
	Design Patterns

