Jonas Eschle, 23 June 2025

Object-Oriented Programming
Scientific Programming with Python

Jonas Eschle

University of Zurich
Faculty of Science

23 June 2025

Contributors: Niko Wilbert, Roman Gredig, Christian Elsasser, Andreas Weiden, Jonas Eschle, Nicola Chiapolini
@ @ This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Jonas Eschle, 23 June 2025

Outline
What is OOP?
Fundamental Principles of OOP
Specialities in Python
Science Examples

Design Patterns

Jonas Eschle, 23 June 2025

__winalisOOP? ________Fundamerial Principles ol OOP __________ Specillies n Pylton __________Science Examples_____Design Paterns_
Setting the scene

Object-oriented programming is a programming paradigm.

» Imperative programming
» Object-oriented
»> Procedural

» Declarative programming

» Functional
> Logic

Jonas Eschle, 23 June 2025

What is Object-Oriented Programming?

4/35

Segment programs into instances of different object classes:
» Instance variables to describe the state of the object
» Methods to model the behaviour of the object

A class definition is like a blueprint. Programs create instances and execute
their methods.

Jonas Eschle, 23 June 2025 5/35

Why might OOP be a good idea?

DRY (Don'’t repeat yourself): KIS (Keep it simple):

Create class functionality once, use Split functionality into basic building blocks and
repeatedly across programs. algorithms invoking them. This creates a
Inheritance allows easy creation of new classes natural code structure.

by extending existing ones.

Complex problems require more than single instruction sequences for maintainable code.

Jonas Eschle, 23 June 2025 6/35

Example of a class

class Dog: » Start with class keyword.

def _init_(self, color=tbrown’): > Methods: functions in class scope with self
self.color = color .,

as first argument.

def make_ d(self): .. .

‘ ;‘rist?ﬁﬁﬁfffﬁ) » __init__: called when creating new

instances.
create an instance 'snoopy' of the class Dog

snoopy = Dog() » Data attributes are defined in __init__.

first argument (self) is this Dog instance
snoopy .make_sound ()

change snoopy's color
snoopy.color = "yellow"

Jonas Eschle, 23 June 2025 7135

Fundamental Principles of OOP (I)

Encapsulation In Python:
» Expose only necessary parts (public »> No explicit private/public declarations.
interface). » Convention: private parts start with _.
» Hide implementation details for abstraction. » Uses documentation and conventions
» Break large problems into understandable instead of enforcement.

parts.

Jonas Eschle, 23 June 2025 8/35

Fundamental Principles of OOP

Example of Encapsulation

class Dog:

def

» Use pat and beat methods to change mood.
__init__(self, color="brown"):

- » Don’t access _mood or _change_mood
self.color = color .
self._mood = 5 dlrectly.

_change_mood(self, change):
self._mood += change
self.make_sound()

make_sound (self):
if self._mood < 0:
print ("Grrrr!")
else:
print ("Wuff!")

pat(self):
self._change_mood (1)

beat (self):
self._change_mood(-2)

9/35

Jonas Eschle, 23 June 2025
Fundamental Principles of OOP

Fundamental Principles of OOP (Il)

Inheritance In Python:
» Create subclasses that inherit/extend » Inherit from one/multiple classes (multiple
parent classes. not recommended).
» Override methods, add specialized behavior. » Access parent methods via super.
» All classes derive from object (implicit).

Jonas Eschle, 23 June 2025
Fundamental Principles of OOP

Example of Inheritance

class Mammal: from mammal import Mammal
def __init__(self, color="grey"):
self.color = color class Dog(Mammal) :
self._mood = 5 def __init__(self, color="brown"):
super().__init__(color)
def _change_mood(self, change):
self._mood += change def make_sound(self):
self.make_sound() if self._mood < 0:
print ("Grrrr!")
def make_sound(self): else:
raise NotImplementedError print ("Wuff!")
def pat(self): » super().__init__(color): calls parent
self._change_mood (1) constructor.
def beat(self): > super: accesses parent class methods.

self._change_mood(-2)
» Used when extending parent methods.

Jonas Eschle, 23 June 2025 11/35

Fundamental Principles of OOP (lll)

Polymorphism In Python:
» Treat subclasses like parent class, » Python is a dynamically typed language:
execute specialized behavior. the type (class) of a variable

» Example: All mammals make sounds; dogs is only known when the code runs.
bark. » Duck Typing: No need to know class of
object if it provides the required methods:
“If it looks like a duck, swims like a duck, and
quacks like a duck, then it probably is a
duck.” (and we treat it as a duck)

» Type checking can be performed via
the isinstance function, but generally prefer
duck typing and polymorphism.

Jonas Eschle, 23 June 2025 1

Example of Polymorphism

from animals import Dog, Cat, Bear > caress works for all objects having a method
pat
def caress(mammal, number_of_pats): . .
if isinstance(mammal, Bear): > SpeCIaI behaviour for bears:
raise TypeError("Bad Idea!") use isinstance (mammal, Bear) to check if
for _ in range(number_of_pats): .
mammal . pat () mammal is a bear.
4, ¢, b - Dog(), Cat(), Bear() > Dyngmm typing makes functlop overloading
caress(d, 3) # "Wuff!" (3z) like in other languages impossible!

caress(c, 3) # "Purr!" (3z)
caress(b, 3) # raises TypeError

Jonas Eschle, 23 June 2025 1
Specialities in Python

Python Specialities — Magic Methods

» Magic methods (full list here) start and end

class Dog:
def __init__(self, name, color="brown"): with two underscores (“dunder”).
self .name = name . .
self.color = color » They customise standard Python behavior
self._mood =5 (e.g. string representation or operator
definition).

def __repr__(self):

return f"{self.name}: {self.color} dog"

snowy = Dog("snowy", "white")
print(snowy) # snowy: white dog

https://docs.python.org/3/reference/datamodel.html#special-method-names

Jonas Eschle, 23 June 2025 1

Python Specialities — Property

class Dog: » property() has upto four arguments:

def __init__(self, color="brown"): 1. Getter
self.color = color 2. Setter
self._mood = 5 3. Deleter

def _get_mood(self) : 4. Documentation string
if self._mood < O: » Access calculated values like data attributes.

return "angry

else: » Create read-only attributes.

return "happy"

» Preprocess assigned values (see later).
mood = property(_get_mood)

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print ("Snowy is", snowy.mood)

Jonas Eschle, 23 June 2025 1

Specialities in Python

Python Specialities — Property

class Dog: > property() has upto four arguments:
def __init__(self, color="brown"): 1. Getter
self.color = color 2. Setter
self._mood = 5 3. Deleter
@ 4. Documentation string
property
def mood(self): > Access calculated values like data attributes.
if self._mood < 0:
return "angry" » Create read-only attributes.
else:
return "happy" » Preprocess assigned values (see later).

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print ("Snowy is", snowy.mood)

Jonas Eschle, 23 June 2025
Specialities in Python

Python Specialities — Classmethods

class Dog: » A classmethod takes as its first argument a
def __init__(self, name, color="brown"): class instead of an instance of the class. It is
self.name = name therefore called c1s instead of self.

self.color = color) .)
» One usecase is to write multiple

@classmethod constructors for a class, e.g.:
def from_string(cls, s): > ..
name, *color = s.split(",") Default __init__.

if not color or type(color) != str: » From serialized string.
return cls(name) » From databaseffile.
return cls(name, color) » Other usecases
snowy = Dog.from_string("snowy,white") »> Keep track/update existing objects (changes

class variable).

» Instance-independent methods
> ..

Jonas Eschle, 23 June 2025 1

Python Specialities — Class attributes

class Dog: > A class can also have attributes that are

breed = "dog" shared among all its objects.
11_ = set()
* ’ > If the attribute is modified, all objects will see

def __init__(self, name, color="brown"): this (“class global").
self .name = name i Lo
self.color = color > Pitfall assignment: Assigning to an
Dog.all_.add(self) instance (balto.breed = "husky"), creates
def __repr__(self): a new instance attribute, hiding the class
return f"{self .name}: {self.color} {self.breed}" one. You need the class to modlfy the class
Dog("snowy", "white") attribute (type(balto) .breed = "canis")

balto = Dog("balto")
balto.breed = "husky"
print(Dog.all_) # {snowy: white dog, balto: brown husky}

Jonas Eschle, 23 June 2025 17/35

Advanced OOP Techniques

There are many advanced techniques that we didn’t cover:

» Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to understand the
Method Resolution Order (MRO) to understand super.

» Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.

» Abstract Base Classes: Enforce that derived classes implement particular methods from the base
class.

» Metaclasses: (derived from type), their instances are classes.

» Great way to overcomplicate when feeling clever.
> Avoid these - you'll likely regret it (KIS).

Jonas Eschle, 23 June 2025

Science Examples

Science Examples — Vector

class Vector3D:
def __init__(self, x, y, 2):
self.x, self.y, self.z = x, y, z

def __add__(self, other):
return type(self) (self.x + other.x,
self.y + other.y,
self.z + other.z)

@property
def length(self):
return (self.x**2+self.y*x2
+self .z**2)**0.5

Q@length.setter
def length(self, length):
scale = length/self.length
self.x *= scale; self.y *= scale; self.z *= scale

decorators could be replaced by “length = property(....

but functions would need distinguishable names

from vector import Vector3D

vl = Vector3D(0, 1, 2)
v2 = Vector3D(1,-3, 0)
v3 = vl + v2
print(v3.length) # 3.0
v3.length = 6
print(v3.x, v3.y, v3.z)

» Custom type with optimized
behavior.
» Custom functionality.

» type(self) in _
inheritance.

add__: simplifies

» Qlength.setter: marks property
setter.

Jonas Eschle, 23 June 2025 35

Science Examples — Dataset

import numpy as np from dataset import Dataset
class Dataset: ds = Dataset("data_0.csv",
mandatory_metadata = ["label", "color", "marker"] label="calibration",
def __init__(self, datafile, **metadata): color="r",
for key in self.mandatory_metadata: marker="+")
if key not in metadata: print(ds.label)
raise KeyError("Missing metadata", key)
self.metadata = metadata » Store metadata with data.
self.data = np.loadtxt(datafile, delimiter=",")
self.validate() » Data validation on load.
def validate(self): » Calculate derived quantities.

if self.data.shape !'= (4, 10):
raise ValueError("Bad shape of data, has to be (4, 10).")

@property
def label(self):
return self.metadata["label"]

def peak_row(self):
return self.data.max(axis=1).argmax()

Jonas Eschle, 23 June 2025 35

Science Examples — Sensors

from urllib.request import urlopen from sensors import WebSensor
class Sensor: sensor = WebSensor (
def __init__(self, offset=0, scale_factor=1): "https://crbn.ch/sensor", 273
self.offset = offset)
self.scale = scale_factor print(sensor.get_value())
def get_value(self): » Combine configuration with

return (self._get_raw() + self.offset) * self.scale furu:ﬂor1aﬁty
def _get_raw(self): » Support different sensor access
raise NotImplementedError
methods.
class WebSensor(Sensor):
def __init__(self, url, *args, **kwargs):
super () .__init__(*args, **kwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)
return float(res.read())

Jonas Eschle, 23 June 2025
Science Examples

Science Examples — Value with Uncertainty

class UncertVal:
def __init__(self, value, uncertainty=0):
self.val = value
self.std = uncertainty

def __str__(self):
return f"{self.val} +/- {self.std}"

def add(self, other, corr=0):
variance = (self.std ** 2 + other.std *x 2
+ 2 * self.std * other.std * corr)
return type(self) (self.val + other.val,
variance ** 0.5)

def __add__(self, other):
return self.add(other)

from uncertval import UncertVal

a = UncertVal(2, 0.3)
b = UncertVal(3, 0.4)
print(a + b) # 5 +/- 0.5

» Group related values.
» Useful string representation.

» Operators respect value
relationships.

Jonas Eschle, 23 June 2025 22/35

Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right: How design principles can help:
» Rule of three: Third repetition — create » Design principles tell you in an abstract way
class/function. what a good design should look like (most
> Sketch with pen and paper. come down to loose coupling).
» Be pragmatic, not perfectionist about > Design Patterns are concrete solutions for
real-world correspondence. reoccurring problems.

» Testability: good design criterion.

Jonas Eschle, 23 June 2025 23/35

Design Patterns

Some Design Principles

Scope of classes: How to design (programming) interfaces:

» One class = one single clearly defined » Principle of least knowledge.
responsibility. Each unit should have only limited

> Favor composition over inheritance. knowledge about other units. Only talk to
Inheritance is not primarily intended for your immediate friends.
code reuse, its main selling point is » Minimize the surface area of the interface.
polymorphism. “Do | want to use these > Program to an interface, not an
subclasses interchangeably?” implementation. Do not depend upon

» Separate varying aspects from stable concrete classes.
ones.

Open for extension, closed for modification.

Jonas Eschle, 23 June 2025

Purpose & background:

» Idea of concrete design approach for
recurring problems.

» Closely related to the rise of the traditional
OOP languages C++ and Java.

» More important for compiled languages
(Open-Closed principle stricter!) and those

with stronger enforcement of encapsulation.

24/35

Design Patterns

Examples:
» Decorator pattern
» Strategy pattern
» Factory pattern
> ...
Comprehensive list here.

A Brain-Friendly Guide
_Head First
Design Patterns

Design Patterns
oi i Soware

oY

https://en.wikipedia.org/wiki/Software_design_pattern

Jonas Eschle, 23 June 2025 25/35

Design Patterns

Decorator Pattern

Jonas Eschle, 23 June 2025
Design Patterns

Decorator Pattern — Motivation

Challenge:

» How to modify the behaviour of an individual

object ...

» ...and allowing for multiple modifications.

Example: Implement a range of products of a
coffee house chain

But what about the beloved add-ons?

(Do not confuse the decorator pattern with
function decorators!)

class Beverage:
imagine some attributes like
temperature, amount left,...
_name = "beverage"

_cost = 0.00

def __str__(self):

return self._name

Q@property
def cost(self):
return self._cost

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class Tea(Beverage):
_name = "tea"

Jonas Eschle, 23 June 2025

Design Patterns

Decorator Pattern — First try

Solution:
» Implementation via subclasses

Issue: Number of subclasses explodes to allow
for multiple modifications (e.g.
CoffeeWithMilkAndSugar).

class Coffee(Beverage):
_name "coffee"
_cost 3.00

class CoffeeWithMilk(Coffee):
_name "coffee with milk"
_cost 3.30

nwon

class CoffeeWithSugar(Coffee):
_name = "coffee with sugar"

Jonas Eschle, 23 June 2025

Design Patterns

Decorator Pattern — Second try

Solution:
. . . class Beverage:
» Implementation with switches _name = "beverage"
. . _cost = 0.00
Issue: No additional add-ons implementable
without changing the class (violation of the def __init__(self, milk=False, sugar-False):
. | self._milk = milk
Open_C|ose prInCIple) self._sugar = sugar

def __str__(self):

desc = self._name
if self._milk:

desc += ", with milk"
if self._sugar:
desc += ", with sugar"

return desc

Q@property
def cost(self):
cost = self._cost
if self._milk:
cost += 0.30
if self._sugar:
cost += 0.20
return cost

Jonas Eschle, 23 June 2025 29/35

Decorator Pattern — Implementation

Solution: A
class Milk:
> Create a class that wraps a beverage and def __init__(self, beverage):
behaves like a beverage itself. (i.e. self.base = beverage
implements the beverage interface) def __str__(self):

G . eturn f"{self.base}, with milk"
> Possibility to create a chain of decorators. remm e

" @property

» Composition solves the problem. dof cost(self):

» Downside: Need to implement all functions return self.base.cost + 0.30
of beverage even if they do not need to be coffee_with_milk = Milk(Coffee())

changed.

Jonas Eschle, 23 June 2025 30/35

Design Patterns

Strategy Pattern

Jonas Eschle, 23 June 2025

Strategy Pattern — Motivation (1)

Let’s implement a duck . . .

class Duck:

def

def

def

def

__init__(self):
stateless class for simplicity
pass

quack(self):
print ("Quack!")

display(self):
print ("Boring looking duck.")

take_off (self):
print("Run fast, flap wings.")

fly_to(self, destination):
print("Fly to", destination)

land(self):
print ("Extend legs, touch down.")

Jonas Eschle, 23 June 2025 32/35

Strategy Pattern — Motivation (I1)

...and different types of ducks!
class RedheadDuck(Duck) :

Oh, no! The rubber duck should not def display(self):
. print ("Duck with a read head.")
fly! We need to overwrite all the
methods about f|y|ng class RubberDuck(Duck) :
. . def quack(self):
» What if we want to introduce a print ("Squeak!")
?
DecoyDuck as well? def display(self):
» What if a normal duck suffers a print("Small yellow rubber duck.")

broken wing?

= It makes more sense to abstract
the flying behaviour.

Jonas Eschle, 23 June 2025

Strategy Pattern — Implementation (1)

» Create a class to describe the

class FlyingBehavior:

flying behaviour (flying def take_off(self):
print("Run fast, flap wings.")
Strategy)' n def fly_to(self, destination):
> ...give Duck an instance of it . .. print("Fly to", destination)
def land(self):
» ...and handle all the flying stuff print ("Extend legs, touch down.")

via this instance

class Duck:
def __init__(self):
self.flying_behavior = FlyingBehavior()
def take_off(self):
self.flying_behavior.take_off ()
def fly_to(self, destination):
self.flying_behavior.fly_to(destination)
def land(self):
self.flying_behavior.land()
display, quack as before...

Jonas Eschle, 23 June 2025

Design Patterns

Strategy Pattern — Implementation (I1)

» Other example of composition
over inheritance.

» Encapsulation of function
implementation in the strategy
object.

» Useful pattern to e.g. define
optimisation algorithm at runtime.

class NonFlyingBehavior (FlyingBehavior) :
def take_off(self):
print("It's not working :-(")
def fly_to(self, destination):
raise Exception("I'm not flying.")
def land(self):
print("That won't be necessary.")

class RubberDuck(Duck) :
def __init__(self):
self.flying_behavior = NonFlyingBehavior()
def quack(self):
print ("Squeak!")
def display(self):
print("Small yellow rubber duck.")

class DecoyDuck(Duck) :
def __init__(self):
self.flying_behavior = NonFlyingBehavior ()
different implementation for display/quack

Jonas Eschle, 23 June 2025 35/35
Design Patterns

Take-aways

» Object-oriented programming offers a powerful paradigm to structure your code.
» Inheritance, design principles and patterns allow to avoid repetitions (DRY).

» But do not overcomplicate things and always ask yourself if applying a particular functionality makes
sense in the given context!

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

OR ISE OE LITLE. goto main.5b3;
’GOTO‘\ INGTEAD.

g E & *COMPILE*

	What is OOP?
	Fundamental Principles of OOP
	Specialities in Python
	Science Examples
	Design Patterns

