
Federica Lionetto, June 25, 2025 1 / 37

NumPy Pandas Beyond

Data structures –
NumPy, Pandas & beyond
Scientific programming with Python

Federica Lionetto

University of Zurich
Faculty of Science

June 25, 2025

Based partially on a talk by Stéfan van der Walt This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Federica Lionetto, June 25, 2025 2 / 37

NumPy Pandas Beyond

The ecosystem of Homo Python Scientificus

[Ondřej Čertík/LANL]

Federica Lionetto, June 25, 2025 3 / 37

NumPy Pandas Beyond

Table of contents
▶ NumPy

▶ Arrays
▶ Data structure
▶ Broadcasting
▶ Indexing

▶ Pandas
▶ I/O
▶ Operations

▶ Other options
▶ Pickle, JSON, YAML and protocol buffers
▶ SQL and NoSQL

Federica Lionetto, June 25, 2025 4 / 37

NumPy Pandas Beyond

NumPy – the fundamental container for scientific computing

Federica Lionetto, June 25, 2025 5 / 37

NumPy Pandas Beyond

import numpy as np
https://www.numpy.org

NumPy offers memory-efficient data containers for fast numerical operations, e.g. in
data manipulation and typical linear algebra calculations

Standard Python

L = list(range(1000))
[i**2 for i in L]

NumPy

import numpy as np
a = np.arange(1000)
a**2

⇒ Speed up by a factor of ∼ 100

https://www.numpy.org

Federica Lionetto, June 25, 2025 6 / 37

NumPy Pandas Beyond

Details about NumPy
np.__version__ indicates version, np.show_config() reveals information about libraries

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject ;

Federica Lionetto, June 25, 2025 7 / 37

NumPy Pandas Beyond

Creating NumPy arrays
There are several ways to do so

Examples

a = np.array([1,2,4]) # [1,2,4]
b = np.arange(1,15,2) # [1,3,5,7,9,11,13]
c = np.linspace(0,1,6) # [0.0,0.2,0.4,0.6,0.8,1.0]
d = np.empty((1,3)) # empty 1x3 array
e = np.zeros((2,5,3)) # 2x5x3 array of zeros
f = np.ones((3,3)) # 3x3 array of ones
g = np.eye(4) # 4x4 unit matrix
h = np.identity(4) # 4x4 unit matrix
i = np.diag(np.array([1,2,3,4])) # diagonal matrix
l = np.diag(np.array([1,2,3,4]),k=-1) # values just below the main diagonal
m = np.diag(np.array([1,2,3,4]),k=2) # values 2 rows above the main diagonal

Federica Lionetto, June 25, 2025 8 / 37

NumPy Pandas Beyond

NumPy arrays of random numbers
Again, several possibilities

Examples

a = np.random.rand(4) # 4-elements array from [0,1)
b = np.random.rand(4,3) # 4x3 array from [0,1)
c = np.random.randint(1,3,(2,3)) # 2x3 array from [1,3)
d = np.random.randn(4,5) # 4x5 array (norm. dist)
e = np.random.poisson(3,5) # 5-element array (Poisson dist of mean 3)

Random seed can be set with np.random.seed(<integer>), useful for reproducibility of
results

Federica Lionetto, June 25, 2025 9 / 37

NumPy Pandas Beyond

Basic operations
Many basic functions/operators can be applied on NumPy arrays

Examples

a = np.random.rand(3,4)
b = np.random.rand(3,4)

a+b
a-b
a*b # Which product? See exercise in this lecture
a/b
a+3.0

a>b

Federica Lionetto, June 25, 2025 10 / 37

NumPy Pandas Beyond

Basic operations - more
Many basic functions/operators can be applied on NumPy arrays

Examples

a = np.random.rand(3,4)
b = np.random.rand(3,4)

a.min()
a.min(axis=0)
a.min(axis=1)

np.exp(b)
np.cos(b)

All element-wise operations including dedicated functions, called universal functions
(ufunc)

math.exp(b) ⇒ failure as it expects scalar

Federica Lionetto, June 25, 2025 11 / 37

NumPy Pandas Beyond

Data representation
Data type accessible via dtype variable

Data type

a = np.array([1,0,-2],dtype=np.int64) #[1,0,-2]
b = np.array([1,0,-2],dtype=np.float64) #[1.0,0.0,-2.0]
c = np.array([1,0,-2],dtype=np.bool) #[True,False,True]
c.dtype # dtype('bool')

Federica Lionetto, June 25, 2025 12 / 37

NumPy Pandas Beyond

Data structure
Information via attributes accessible:
ndim number of dimensions (axes)
shape size of the different dimensions (as a tuple, ndim elements)
size total number of elements
itemsize size of one element
nbytes data size
data memoryview of the data (tobytes() returns the byte representation)
flags among other things if the memory “belongs” to this array
strides number of bytes to jump to in-/decrement index by one (as a tuple)

Federica Lionetto, June 25, 2025 12 / 37

NumPy Pandas Beyond

Data structure
Strides
Problem of one-dimensional memory to store multi-dimensional arrays:

Row

Column

Strides describe the logical alignment of the data within the memory

Federica Lionetto, June 25, 2025 12 / 37

NumPy Pandas Beyond

Data structure
Strides
Problem of one-dimensional memory to store multi-dimensional arrays:

Row

Column

Transposing the array means to interchange
the strides of the different dimensions

Strides describe the logical alignment of the data within the memory

Federica Lionetto, June 25, 2025 12 / 37

NumPy Pandas Beyond

Data structure
Information via attributes accessible:
ndim number of dimensions (axes)
shape size of the different dimensions (as a tuple, ndim elements)
size total number of elements
itemsize size of one element
nbytes data size
data memoryview of the data (tobytes() returns the byte representation)
flags among other things if the memory “belongs” to this array
strides number of bytes to jump to in-/decrement index by one (as a tuple)

Transpose of arrays can be called by <array name>.T ⇒ inverts shape and strides (i.e.
C-contiguous ↔ F-contiguous)

Be aware that many manipulations do not lead to memory duplications. You can
force it by the copy method.

Federica Lionetto, June 25, 2025 13 / 37

NumPy Pandas Beyond

Shape manipulation
Possible to manipulate the shape of existing arrays

Examples

a = np.random.randn(3,4)
b = np.random.randn(4)
c = np.random.randn(4,1)

a.reshape(1,12)
a.resize(1,12) # Modify existing array
a.ravel()
a.T
b.shape #(4,) wrong way
b.T # no changes
c.shape #(4,1) right way
c.T # expected behaviour

Federica Lionetto, June 25, 2025 14 / 37

NumPy Pandas Beyond

Get the data
Reading data from txt/csv/etc. files can be sometimes very painful,
especially with complicated/mixed data structure

NumPy offers an easy way to read in data from text files
▶ function loadtxt(fname,dtype,comments,delimiter,skiprows,usecols,...)

▶ delimiter for columns separation, comments for the string indicating comments in the
text file

▶ function genfromtxt(...,missing_values,filling_values)
▶ more advanced options for missing data

Binary files as well as text files are also readable via the function fromfile

Federica Lionetto, June 25, 2025 14 / 37

NumPy Pandas Beyond

Get the data
Complicated data structure are manageable by defining the data type, e.g.

Solar.txt (Solar system on June 21, 2014)

Sun 332946 2.13E-03 -1.60E-03 -1.20E-04 5.01E-06 4.08E-06 -1.24E-07
Mercury 0.0552 1.62E-01 2.64E-01 6.94E-03 -2.97E-02 1.56E-02 4.00E-03
Venus 0.8149 3.02E-01 6.54E-01 -8.44E-03 -1.85E-02 8.32E-03 1.18E-03
Earth 1 5.66E-01 -8.46E-01 -9.12E-05 1.40E-02 9.49E-03 -5.81E-07

Loading

dt = np.dtype([('name','|S7'),('mass',np.float32),
('position',[('x',np.float32),('y',np.float32),('z',np.float32)]),
('velocity',[('x',np.float32),('y',np.float32),('z',np.float32)])])

data = np.loadtxt('Solar.txt', dtype=dt)

Federica Lionetto, June 25, 2025 15 / 37

NumPy Pandas Beyond

Strings in arrays
Strings in arrays are in principle not a problem (as seen before), but two things to keep
in mind

1. Speed reduction due to a different common base type of the objects stored
in the array (i.e. PyObject)

2. Memory spoiling since the entry size is defined by the maximal length
of the stored strings

⇒ if possible, better work with e.g. lookup tables

In general you can mix different data types in an array

Mixed data type

na = np.array([2,True,"Hello"],dtype=object)

without dtype=object the elements would be treated as strings

Federica Lionetto, June 25, 2025 16 / 37

NumPy Pandas Beyond

Broadcasting – leveraging vectorisation
Memory-friendly way of combining arrays with different shapes in mathematical
operations

Example:

1 8 3 7 + 3

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting

Federica Lionetto, June 25, 2025 16 / 37

NumPy Pandas Beyond

Broadcasting – leveraging vectorisation
Memory-friendly way of combining arrays with different shapes in mathematical
operations

Example:

1 8 3 7 + 3

3 3 3 3

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting

Federica Lionetto, June 25, 2025 16 / 37

NumPy Pandas Beyond

Broadcasting – leveraging vectorisation
Memory-friendly way of combining arrays with different shapes in mathematical
operations

Example:

1 8 3 7 + 3

3 3 3 3

4 11 6 10

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting

Federica Lionetto, June 25, 2025 17 / 37

NumPy Pandas Beyond

Broadcasting – more complex
Multiplication of a 3 × 5-array and a 8-elements array

[S. v. d. Walt]

Examples
a = np.random.rand(3,5)
b = np.random.rand(8)
c = a[...,np.newaxis]*b
c.shape # (3,5,8)

np.newaxis allows to align the dimensions of arrays so that they can be broadcasted,
but be careful and make sure the arrays are aligned as you want them.

Federica Lionetto, June 25, 2025 18 / 37

NumPy Pandas Beyond

Broadcasting – matching rules
This principle can be expanded to multi-dimensional arrays,
e.g. a 3×4-array and a 4-elements array
⇒ adding/multiplying/etc. the 1D array to each of the three rows of the 2D array

Rule: Compare dimensions, starting from the last one. Match when either dimension is
one or None, or if dimensions are equal.

(3,4) (4,1,6) (3,4,1) (3,2,5) (4,2,3) (4,1,3)
(4) (1,3,6) (8) (6) (4,3) (4,3)

(3,4) (4,3,6) (3,4,8) not OK not OK (4,4,3)

Arrays can be extended to further dimensions by <array>[...,np.newaxis]

e.g. given a.shape → (3,2) ⇒ a[...,np.newaxis,np.newaxis].shape → (3,2,1,1)

Federica Lionetto, June 25, 2025 19 / 37

NumPy Pandas Beyond

Explicit broadcasting
NumPy has the method broadcast_arrays to align two or more arrays

Examples
d = np.random.rand(1,10)
e = np.random.rand(10,1)
dd,ee = np.broadcast_arrays(d,e)

dd and ee are now 10 × 10-arrays, but
without own data
Broadcasted arrays have a stride of zero
⇒ pointer stays while index moves
This concept is a generalisation of the
meshgrid function in MATLAB

Federica Lionetto, June 25, 2025 20 / 37

NumPy Pandas Beyond

Simple indexing
NumPy allows to easily select subsets in the array, e.g.

Examples

a = np.arange(100).reshape(10,10)
a[4:9] # rows 4 to 8
a[:,3:8] # columns 3 to 7
a[:,-1] # the last column
a[-2::-3,1:6:2] # 2nd-to-last row every 3rd and every odd column from 1 to 5

Also repetition of rows or columns are possible, e.g.

Examples

a[:,[1,3,1]]

All these operations do not create additional memory entries!

Federica Lionetto, June 25, 2025 21 / 37

NumPy Pandas Beyond

Fancy indexing
NumPy also allows to select subsets via arrays of indices, e.g.

Examples

a = np.arange(100).reshape(10,10)
i0 = np.random.randint(0,10,(8,1,8))
i1 = np.random.randint(0,10,(2,8))
a[i0,i1] # creates a 8 × 2 × 8 array

▶ First broadcasting of the two index arrays i0 and i1
▶ Then selecting the elements in a according to the broadcasted arrays

Caution: Mixing of indexing types (e.g. b[5:10,i0,:,i1]) can lead to unpredictable
output shapes (and to barely readable code)

Federica Lionetto, June 25, 2025 22 / 37

NumPy Pandas Beyond

Pandas

Federica Lionetto, June 25, 2025 23 / 37

NumPy Pandas Beyond

import pandas as pd – and never use Excel again!
https://pandas.pydata.org
▶ Python data analysis library
▶ Tools for reading and writing data and interface to a large variety of file formats

(nobody has heard about all of them!)
▶ Offering data containers plus corresponding functionality

▶ DataFrame object for data manipulation
▶ time series pd.Series and their notorious functions

(i.e. rolling-“whatever”-you-want function)
▶ many SQL-like data operations (group, merge, join)

▶ Data interface/API to many data repositories (Yahoo Finance, FRED)
Excel on steroids!
. . . but particularly helpful tool to transform data (clean-up, aggregation, . . .)

https://pandas.pydata.org

Federica Lionetto, June 25, 2025 24 / 37

NumPy Pandas Beyond

numpy vs. pandas
NumPy

fast and good with numbers

Pandas

a bit slow and cool with everything

Federica Lionetto, June 25, 2025 25 / 37

NumPy Pandas Beyond

Some functionalities and pitfalls
Functionalities
▶ Fill missing (NA) values according to different principles
▶ Timeseries applications (e.g. resample)
▶ Data aggregation (e.g. groupby)
▶ Merging tools (e.g. append, concat, merge, join)
▶ Derivation of new features via map (from Series) or apply (from Dataframe)

Pitfalls
▶ Pandas tries to be smart!!!
▶ It accepts data as long as it can derive the lowest common ancestor

(almost always the case although ending up with object)
▶ . . . so you should check the data types dtypes since your processing code (e.g.

groupby) will work, but not as expected

Federica Lionetto, June 25, 2025 26 / 37

NumPy Pandas Beyond

NumPy and Pandas - reloaded
If you work with big data, chances are high that at some point you’ll encounter a
MemoryError when loading your data. What next?

▶ Dask
https://dask.pydata.org/en/latest/
▶ flexible parallel computing library for analytics
▶ compatible with NumPy, Pandas, Scikit-Learn and many others

Pandas
import pandas as pd
df = pd.read_csv('2018-01-01.csv')
df.groupby(df.user_id).value.mean()

Dask
import dask.dataframe as dd
df = dd.read_csv('2018-*-*.csv')
df.groupby(df.user_id).value.mean()

.compute()

https://dask.pydata.org/en/latest/

Federica Lionetto, June 25, 2025 27 / 37

NumPy Pandas Beyond

Other options for storing data

▶ Pickle, JSON, YAML and protocol buffers
▶ SQL and NoSQL

Federica Lionetto, June 25, 2025 28 / 37

NumPy Pandas Beyond

Pickle and JSON – brothers from other mothers
Pickle
▶ Python proprietary
▶ . . . thus also Python objects storable

→ class instances
→ NumPy arrays

▶ Binary files

JSON (javascript object notation)
▶ Interface to other/web applications
▶ Similar structures

Python: array → JSON: array
Python: dict → JSON: object

▶ Some format issues need to be
cleared

Pickle
a = dict(...)
with open(<filename>,'wb') as f_o:

pickle.dump(a,f_o)
with open(<filename>,'rb') as f_i:

b = pickle.load(f_i)
files opened in binary-mode!

JSON
a = dict(...)
with open(<filename>,'w') as f_o:

json.dump(a,f_o)
with open(<filename>,'r') as f_i:

b = json.load(f_i)
or with strings: dumps/loads

Federica Lionetto, June 25, 2025 29 / 37

NumPy Pandas Beyond

YAML
Improved version of JSON
▶ language-portable
▶ more human-readable, e.g. indentation instead of symbols

Examples

data = {
'first_data':[1,2,3,4,5],
'second_data':'Just a string.',
'third_data': dict(a=1.1,b=1.2,c=1.3)}

with open('example.yaml','w',default_flow_style=False) as f_o :
yaml.dump(data,f_o)

with open('example.yaml','r') as f_i:
new_data = yaml.load(f_i)

Federica Lionetto, June 25, 2025 30 / 37

NumPy Pandas Beyond

Protocol buffers
Example: address book application that can read and write information from/to a file.
How do we exchange this data?
▶ Pickle
▶ JSON
▶ Custom encoding
▶ XML
▶ protobuf: Google’s mechanism for serialising structured data that uses a binary

format to transfer messages
▶ it works with different programming languages
▶ it transfers data as fast as possible, as compact as possible
▶ well-defined schema, but no need to worry if schema changes over time

Federica Lionetto, June 25, 2025 31 / 37

NumPy Pandas Beyond

How to work with protocol buffers
▶ Define messages (and their fields) in a .proto file

▶ messages can consist of fields and other messages, nested structure
▶ fields have name, type, modifier and tag

▶ Use the protocol buffer compiler to compile the .proto file
▶ Use the Python protocol buffer API to read and write messages

Federica Lionetto, June 25, 2025 32 / 37

NumPy Pandas Beyond

Connection to SQL Databases - sqlite3
What is SQLite? (https://www.sqlite.org)

▶ Lightweight disk-based (= server-less) SQL-type (= spreadsheet-based) database
system

▶ Does not require a separate server process
▶ Understands most of the standard SQL language but omits some features

(drop column, rename column)
▶ Due to the outsourced write-interlock handling write-intensive programs will suffer

Another option, SQLAlchemy (http://www.sqlalchemy.org)
▶ Python SQL toolkit that gives developers the full power and flexibility of SQL
▶ Probably the most suitable package for a database-type independent approach,

with connections to:
▶ MySQL
▶ Microsoft Access
▶ SQLite

https://www.sqlite.org
http://www.sqlalchemy.org

Federica Lionetto, June 25, 2025 33 / 37

NumPy Pandas Beyond

A Few Typical (SQL) Commands
https://www.sqlite.org

Purpose Command

Retrieve all data from a table SELECT * FROM <table>

Retrieve columns (c1,c2) from
table t based on condition SELECT c1,c2 FROM t WHERE <cond>

Group entries according to values SELECT SUM(c1) FROM t GROUP BY c3,c4

Add new entry INSERT INTO t (c1,c2) values (v1,v2)

Delete one or more entries DELETE FROM t WHERE c1=v1 AND c2=v2

https://www.sqlite.org

Federica Lionetto, June 25, 2025 34 / 37

NumPy Pandas Beyond

sqlite3
https://docs.python.org/3.6/library/sqlite3.html
▶ Database operations on sqlite3 databases
▶ sqlite3.connect to get a handler on the database
▶ Default output of (part of) a row is a list

=⇒ possibility to change the behaviour via the row_factory variable of the
database

▶ Use ? as placeholder instead of concatenating the SQL command by Python string
operations

▶ Use executemany() to run same SQL command with several parameter sets
▶ All executed commands need to be commited before closing the connection

(<dbvariable>.commit())

https://docs.python.org/3.6/library/sqlite3.html

Federica Lionetto, June 25, 2025 35 / 37

NumPy Pandas Beyond

Summary
▶ Python offers various options to handle data suitable for different purposes

▶ NumPy is a very powerful tool for numerical computations and data manipulations
▶ Pandas offers functionalities of the combination of spreadsheet and database

processing
▶ Various other options to store data – different formats for different purposes

▶ Further leverage with analytics tool (scipy) =⇒ Scientific analysis lecture
▶ Very handy tool for data management. . .
▶ . . . but, for certain particular tasks, other and more suitable options (e.g. large

image databases that can be heavily compressed)
▶ Try it out, try it out, try it out!

Federica Lionetto, June 25, 2025 36 / 37

NumPy Pandas Beyond

References

1. Stéfan van der Walt, Diving into NumPy, Advanced Scientific Programming in
Python, 2013 (Zurich)

2. Bartosz Teleńczuk, Introduction to data visualization, Advanced Scientific
Programming in Python, 2013 (Zurich)

3. Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux, The NumPy array: a
structure for efficient numerical computation, Computing in Science and
Engineering (IEEE)

4. http://www.numpy.org
5. http://pandas.pydata.org

http://www.numpy.org
http://pandas.pydata.org

Federica Lionetto, June 25, 2025 37 / 37

Data Structure (Advanced)
Further information via the flags variable accessible:

C_CONTIGUOUS dimension ordering C-like
F_CONTIGUOUS dimension ordering Fortran-like
OWNDATA responsibility of memory handling
WRITEABLE data changable
ALIGNED appropriate hardware alignment
UPDATEIFCOPY update of base array

C-contiguous:
a[0,0],a[0,1], . . . ,a[0,n],a[1,0], . . . ,a[m,n]

F-contiguous:
a[0,0],a[1,0], . . . ,a[m,0],a[0,1], . . . ,a[m,n]

	NumPy
	Pandas
	Beyond
	Backup

