Federica Lionetto, June 25, 2025

Data structures —
NumPy, Pandas & beyond

Scientific programming with Python

Federica Lionetto

University of Zurich
Faculty of Science

June 25, 2025

Based partially on a talk by Stéfan van der Walt ® 0O This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Federica Lionetto, June 25, 2025

NPy s 8o
The ecosystem of Homo Python Scientificus

@ python’

ENumPy
gSCIPy « matplotlib 3’

SymPy

IPython

@gthon

A scikitsimage 88 o

pandas uy i s

. .

e L NetworkX

. [Ondrej Certik/LANL]

Federica Lionetto, June 25, 2025

Fessrcatonetownezsooss e
CNmy _ Padss _______________________________ Beyond
Table of contents

» NumPy
» Arrays
» Data structure
» Broadcasting
> Indexing

» Pandas
> |/O
» Operations

» Other options

» Pickle, JSON, YAML and protocol buffers
» SQL and NoSQL

Federica Lionetto, June 25, 2025

Pandas

NumPy — the fundamental container for scientific computing

Federica Lionetto, June 25, 2025 5/37

import numpy as np

https://www.numpy.org

NumPy offers memory-efficient data containers for fast numerical operations, e.g. in
data manipulation and typical linear algebra calculations

Standard Python NumPy
L = list(range(1000)) import numpy as np
[i**2 for i in L] a = np.arange(1000)
ax*2

= Speed up by a factor of ~ 100

https://www.numpy.org

Federica Lionetto, June 25, 2025

Details about NumPy

np.__version__ indicates version, np.show_config() reveals information about libraries

NumPy’s C API

ndarray typedef struct PyArrayObject {
Py0Object_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject #*base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;
} PyArrayObject ;

Federica Lionetto, June 25, 2025 7137

Creating NumPy arrays

There are several ways to do so

Examples
a = np.array([1,2,4]) # [1,2,4]
b = np.arange(1,15,2) #[1,3,5,7,9,11,13]
¢ = np.linspace(0,1,6) # [0.0,0.2,0.4,0.6,0.8,1.0]
d = np.empty((1,3)) # empty 1z3 array
e = np.zeros((2,5,3)) # 2xbc3 array of zeros
f = np.ones((3,3)) # 3z3 array of ones
g = np.eye(4) # 4zd unit matriz
h = np.identity(4) # 4z unit matriz
i = np.diag(up.array([1,2,3,4])) # diagonal matriz
1 = np.diag(np.array([1,2,3,4]) ,k=-1) # values just below the main diagonal
m = np.diag(np.array([1,2,3,4]),k=2) # wvalues 2 rows above the main diagonal

Federica Lionetto, June 25, 2025 8/37

NumPy arrays of random numbers

Again, several possibilities

Examples
a = np.random.rand(4) # J-elements array from [0,1)
b = np.random.rand(4,3) # 4z3 array from [0,1)
¢ = np.random.randint(1,3,(2,3)) # 2z3 array from [1,3)
d = np.random.randn(4,5) # 4z5 array (norm. dist)
e = np.random.poisson(3,5) # 5-element array (Poisson dist of mean 3)

Random seed can be set with np.random. seed(<integer>), useful for reproducibility of
results

Federica Lionetto, June 25, 2025

Basic operations

Many basic functions/operators can be applied on NumPy arrays

Examples

a
b

np.random.rand(3,4)
np.random.rand(3,4)

a+b

a-b

axb # Which product? See exercise in this lecture
a/b

a+3.0

a>b

Federica Lionetto, June 25, 2025 10/37

Pandas

Basic operations - more
Many basic functions/operators can be applied on NumPy arrays

Examples

a = np.random.rand(3,4)
b = np.random.rand(3,4)

a.min()
a.min(axis=0)
a.min(axis=1)

np.exp(b)
np. cos(b)

All element-wise operations including dedicated functions, called universal functions
(ufunc)

math.exp(b) = failure as it expects scalar

Federica Lionetto, June 25, 2025 11/37

Data representation

Data type accessible via dtype variable

Data type
a = np.array([1,0,-2],dtype=np.int64) #[1,0,-2]
b = np.array([1,0,-2],dtype=np.float64) #/[1.0,0.0,-2.0]
c = np.array([1,0,-2],dtype=np.bool) #[True,False, True]
c.dtype # dtype('bool')

Federica Lionetto, June 25, 2025 12/37

Data structure

Information via attributes accessible:

ndim number of dimensions (axes)

shape size of the different dimensions (as a tuple, ndim elements)

size total number of elements

itemsize size of one element

nbytes data size

data memoryview of the data (tobytes () returns the byte representation)
flags among other things if the memory “belongs” to this array

strides number of bytes to jump to in-/decrement index by one (as a tuple)

Federica Lionetto, June 25, 2025 12/37

CNumPy _ Pandas _________________________ Bejond
Data structure

Strides
Problem of one-dimensional memory to store multi-dimensional arrays:

Row

T N T Ty
HinnN N { o o
CICCJE] column™ 77
OO

Strides describe the logical alignment of the data within the memory

Federica Lionetto, June 25, 2025 12/37

CNumPy _ Pandas _________________________ Bejond
Data structure

Strides
Problem of one-dimensional memory to store multi-dimensional arrays:

Colum

L ™~ T~
LB o o o [
DDD Row ~1 =1 =
LB

Om0 Transposing the array means to interchange
the strides of the different dimensions

Strides describe the logical alignment of the data within the memory

Federica Lionetto, June 25, 2025 12/37

Data structure

Information via attributes accessible:

ndim number of dimensions (axes)

shape size of the different dimensions (as a tuple, ndim elements)

size total number of elements

itemsize size of one element

nbytes data size

data memoryview of the data (tobytes () returns the byte representation)
flags among other things if the memory “belongs” to this array

strides number of bytes to jump to in-/decrement index by one (as a tuple)

Transpose of arrays can be called by <array name>.T = inverts shape and strides (i.e.
C-contiguous <« F-contiguous)

Be aware that many manipulations do not lead to memory duplications. You can
force it by the copy method.

Federica Lionetto, June 25, 2025

Shape manipulation

Possible to manipulate the shape of existing arrays

Examples

a = np.random.randn(3,4)
b = np.random.randn(4)
¢ = np.random.randn(4,1)

a.reshape(1,12)

a.resize(1,12) # Modify existing array
a.ravel()

a.T

b.shape #(4,) wrong way

b.T # no changes

c.shape #(4,1) right way

c.T # expected behaviour

Federica Lionetto, June 25, 2025 14/37

Get the data

Reading data from txt/csv/etc. files can be sometimes very painful,
especially with complicated/mixed data structure

NumPy offers an easy way to read in data from text files
» function loadtxt (fname, dtype,comments,delimiter,skiprows,usecols,...)

» delimiter for columns separation, comments for the string indicating comments in the
text file

» function genfromtxt(...,missing_values,filling_values)
» more advanced options for missing data
Binary files as well as text files are also readable via the function fromfile

Federica Lionetto, June 25, 2025 14/37

Get the data

Complicated data structure are manageable by defining the data type, e.g.

SOIartXt (Solar system on June 21, 2014)

Sun 332946 2.13E-03 -1.60E-03 -1.20E-04 5.01E-06 4.08E-06 -1.24E-07
Mercury 0.0552 1.62E-01 2.64E-01 6.94E-03 -2.97E-02 1.56E-02 4.00E-03
Venus 0.8149 3.02E-01 6.54E-01 -8.44E-03 -1.85E-02 8.32E-03 1.18E-03
Earth 1 5.66E-01 -8.46E-01 -9.12E-05 1.40E-02 9.49E-03 -5.81E-07

Loading
dt = np.dtype([('name','[S7'),('mass',np.float32),
('position',[('x',np.float32),('y',np.float32),('z',np.float32)]),
('velocity',[('x',np.float32),('y',np.float32),('z',np.float32)]1)]1)

data = np.loadtxt('Solar.txt', dtype=dt)

Federica Lionetto, June 25, 2025 15/37

Strings in arrays

Strings in arrays are in principle not a problem (as seen before), but two things to keep
in mind
1. Speed reduction due to a different common base type of the objects stored
in the array (i.e. PyObject)

2. Memory spoiling since the entry size is defined by the maximal length
of the stored strings

= if possible, better work with e.g. lookup tables

In general you can mix different data types in an array
Mixed data type

na = np.array([2,True,"Hello"],dtype=object)

without dtype=object the elements would be treated as strings

Federica Lionetto, June 25, 2025 16/37

Broadcasting — leveraging vectorisation

Memory-friendly way of combining arrays with different shapes in mathematical

operations
Example:

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting

Federica Lionetto, June 25, 2025 16/37

Broadcasting — leveraging vectorisation

Memory-friendly way of combining arrays with different shapes in mathematical

operations
Example:

1 8 3 7 + 3

3 3 3 3 <—‘

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting

Federica Lionetto, June 25, 2025 16/37

Broadcasting — leveraging vectorisation

Memory-friendly way of combining arrays with different shapes in mathematical

operations
Example:

1 8 3 7 + 3

3 3 3 3 <—‘

4|11 6| |10

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting

Federica Lionetto, June 25, 2025 17/37

Broadcasting — more complex

Multiplication of a 3 x 5-array and a 8-elements array

Examples

np.random.rand(3,5)
= np.random.rand(8)
al...,np.newaxis]*b
.shape # (3,5,8)

0O 0 T
|

[S. v. d. Walt]

np.newaxis allows to align the dimensions of arrays so that they can be broadcasted,
but be careful and make sure the arrays are aligned as you want them.

Federica Lionetto, June 25, 2025 18/37

Broadcasting — matching rules

This principle can be expanded to multi-dimensional arrays,
e.g. a 3x4-array and a 4-elements array
= adding/multiplying/etc. the 1D array to each of the three rows of the 2D array

Rule: Compare dimensions, starting from the last one. Match when either dimension is
one or None, or if dimensions are equal.

(3,4) (4,1,6) (3,4,1) (38,2,5) (4,2,3) (4,1,3

4) (@,3,6) (8 (6) (4,3) (4,3)
(3,4) (4,3,6) (3,4,8) not 0K not OK

Arrays can be extended to further dimensions by <array>[...,np.newaxis]

e.g. given a.shape — (3,2) = al...,np.newaxis,np.newaxis].shape — (3,2,1,1)

Federica Lionetto, June 25, 2025 19/37

Explicit broadcasting

NumPy has the method broadcast_arrays to align two or more arrays

Examples OO0
d = np.random.rand(1,10) DDDDDDDDDD
e = np;random.rand(lo,l) DDDDDDDDDD
dd,ee = np.broadcast_arrays(d,e) %%%%%%%%%%

dd and ee w 10 x 10- , but

without own data. B [

Broadcasted arrays have a stride of zero %%%%%%%%%%

= pointer stays while index moves

This concept is a generalisation of the %%%%%%%%%%

meshgrid function in MATLAB

Federica Lionetto, June 25, 2025

Simple indexing

NumPy allows to easily select subsets in the array, e.g.

Examples
a = np.arange(100) .reshape(10,10)
al4:9] # rows 4 to 8
al[:,3:8] # columns 3 to 7
al:,-1] # the last column

al[-2::-3,1:6:2] # 2nd-to-last row every 3rd and every odd column from 1 to &

Also repetition of rows or columns are possible, e.g.
Examples

al:,[1,3,1]1]

All these operations do not create additional memory entries!

21/37

Fancy indexing

NumPy also allows to select subsets via arrays of indices, e.g.

Federica Lionetto, June 25, 2025

Examples

a = np.arange(100) .reshape(10,10)
i0 = np.random.randint(0,10,(8,1,8))
il = np.random.randint(0,10,(2,8))
ali0,il1] # creates a 8 x 2 x 8 array

» First broadcasting of the two index arrays i0 and i1
» Then selecting the elements in a according to the broadcasted arrays

Caution: Mixing of indexing types (e.g. b[5:10,i0,:,11]) can lead to unpredictable
output shapes (and to barely readable code)

ederica Lionetto, June 25, 2025

Pandas

Federica Lionetto, June 25, 2025 23/37

import pandas as pd —and never use Excel again!

» Python data analysis library

» Tools for reading and writing data and interface to a large variety of file formats
(nobody has heard about all of them!)

» Offering data containers plus corresponding functionality

» DataFrame object for data manipulation

> time series pd.Series and their notorious functions
(i.e. rolling-“whatever”-you-want function)

» many SQL-like data operations (group, merge, join)

» Data interface/API to many data repositories (Yahoo Finance, FRED)

... but particularly helpful tool to transform data (clean-up, aggregation, ...)

https://pandas.pydata.org

Federica Lionetto, June 25, 2025

numpy VS. pandas
NumPy Pandas

11(
10(
Rl 1(
0
1

S

101101
[T
L

~

>

PO G
et .
| A i
) I
J 2
i

fast and good with numbers a bit slow and cool with everything

Federica Lionetto, June 25, 2025 25/37

Some functionalities and pitfalls

Functionalities
» Fill missing (NA) values according to different principles

| 2
| 2
| 2
>

Timeseries applications (e.g. resample)

Data aggregation (e.g. groupby)

Merging tools (e.g. append, concat, merge, join)

Derivation of new features via map (from Series) or apply (from Dataframe)

vy

It accepts data as long as it can derive the lowest common ancestor
(almost always the case although ending up with object)

» ...so0 you should check the data types dtypes since your processing code (e.g.
groupby) will work, but not as expected

Federica Lionetto, June 25, 2025 26 /37

NumPy and Pandas - reloaded

If you work with big data, chances are high that at some point you’ll encounter a
MemoryError when loading your data. What next?

» Dask

» flexible parallel computing library for analytics
» compatible with NumPy, Pandas, Scikit-Learn and many others

Pandas Dask
import pandas as pd import dask.dataframe as dd
df = pd.read_csv('2018-01-01.csv') df = dd.read_csv('2018-%-%x.csv')
df . groupby (df .user_id) .value.mean() df . groupby (df .user_id) .value.mean()

. compute ()

https://dask.pydata.org/en/latest/

Federica Lionetto, June 25, 2025

27/37

Other options for storing data

HI, THIS 1S
YOUR. SON'S SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

R

‘?_Ilf
Al

OH, DERR - DID HE
BREAK SOMETHING?

IN F'. WHY

%

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Shdents;=- 7

{

~OH.YES LUTTNE
BOBBY TARLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

AND T H(FE

¥
“~ YOUVE LEARNED
A i TOSANMIZE YOUR

DATABACE INPUTS.

» Pickle, JSON, YAML and protocol buffers

» SQL and NoSQL

Federica Lionetto, June 25, 2025

Pickle and JSON — brothers from other mothers

Pickle JSON (javascript object notation)
» Python proprietary » Interface to other/web applications
» ...thus also Python objects storable » Similar structures

— class instances Python: array — JSON: array
— NumPy arrays Python: dict — JSON: object
» Binary files » Some format issues need to be
cleared

Pickle JSON

a = dict(...) a = dict(...)

with open(<filename>,'wb') as f_o: with open(<filename>,'w') as f_o:
pickle.dump(a,f_o) json.dump(a,f_o)

with open(<filename>,'rb') as f_i: with open(<filename>,'r') as f_i:
b = pickle.load(f_i) b = json.load(f_i)

files opened in binary-mode! # or with strings: dumps/loads

ica Lionetto, June 25, 2025

NumPy

YAML

Improved version of JSON
» language-portable
» more human-readable, e.g. indentation instead of symbols

Examples

data = {
'first_data':[1,2,3,4,5],
'second_data':'Just a string.',
'third_data': dict(a=1.1,b=1.2,c=1.3)}
with open('example.yaml','w',default_flow_style=False) as f_o :
yaml . dump (data,f_o)
with open('example.yaml','r') as f_i:
new_data = yaml.load(f_i)

Federica Lionetto, June 25, 2025 30/37

Protocol buffers

Example: address book application that can read and write information from/to a file.
How do we exchange this data?

» Pickle
JSON
Custom encoding

XML

protobuf: Google’s mechanism for serialising structured data that uses a binary
format to transfer messages

» it works with different programming languages

» it transfers data as fast as possible, as compact as possible

» well-defined schema, but no need to worry if schema changes over time

>
>
>
>

Federica Lionetto, June 25, 2025 31/37

How to work with protocol buffers

» Define messages (and their fields) in a .proto file

» messages can consist of fields and other messages, nested structure
» fields have name, type, modifier and tag

» Use the protocol buffer compiler to compile the .proto file
» Use the Python protocol buffer API to read and write messages

Federica Lionetto, June 25, 2025 32/37

Connection to SQL Databases - sqlite3
What is SQLite? ()

> Lightweight disk-based (= server-less) SQL-type (= spreadsheet-based) database
system
» Does not require a separate server process
» Understands most of the standard SQL language but omits some features
(drop column, rename column)
» Due to the outsourced write-interlock handling write-intensive programs will suffer
Another option, SQLAlchemy (http://www.sqlalchemy.org)
» Python SQL toolkit that gives developers the full power and flexibility of SQL
» Probably the most suitable package for a database-type independent approach,
with connections to:
> MySQL
» Microsoft Access
» SQlLite

https://www.sqlite.org
http://www.sqlalchemy.org

Federica Lionetto, June 25, 2025 33/37

A Few Typical (SQL) Commands
https://www.sqlite.org

Purpose Command
Retrieve all data from a table SELECT * FROM <table>

Retrieve columns (c1,c2) from
table t based on condition SELECT c1,c2 FROM t WHERE <cond>

Group entries according to values ~ SELECT SUM(c1) FROM t GROUP BY c3,c4
Add new entry INSERT INTO t (c1,c2) values (v1,v2)
Delete one or more entries DELETE FROM t WHERE cl=vl AND c2=v2

https://www.sqlite.org

Federica Lionetto, June 25, 2025 34 /37

sqlited

» Database operations on sqlite3 databases
sqlite3.connect to get a handler on the database
» Default output of (part of) a row is a list

= possibility to change the behaviour via the row_factory variable of the
database

v

» Use executemany () to run same SQL command with several parameter sets

https://docs.python.org/3.6/library/sqlite3.html

Federica Lionetto, June 25, 2025

Summary

» Python offers various options to handle data suitable for different purposes

» NumPy is a very powerful tool for numerical computations and data manipulations
» Pandas offers functionalities of the combination of spreadsheet and database

processing
» Various other options to store data — different formats for different purposes

» Further leverage with analytics tool (scipy) = Scientific analysis lecture
» Very handy tool for data management. ..

» ...but, for certain particular tasks, other and more suitable options (e.g. large
image databases that can be heavily compressed)

> Try it out, try it out, try it out!

Federica Lionetto, June 25, 2025 36 /37

References

1. Stéfan van der Walt, Diving into NumPy, Advanced Scientific Programming in
Python, 2013 (Zurich)

2. Bartosz Telenczuk, Introduction to data visualization, Advanced Scientific
Programming in Python, 2013 (Zurich)

3. Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux, The NumPy array: a
structure for efficient numerical computation, Computing in Science and
Engineering (IEEE)

4. http://www.numpy.org
5. http://pandas.pydata.org

http://www.numpy.org
http://pandas.pydata.org

Federica Lionetto, June 25, 2025

fesercativtoezszes sy
.
Data Structure (Advanced)

Further information via the flags variable accessible:

C_CONTIGUOUS dimension ordering C-like
F_CONTIGUOUS dimension ordering Fortran-like

OWNDATA responsibility of memory handling
WRITEABLE data changable
ALIGNED appropriate hardware alignment

UPDATEIFCOPY update of base array

C-contiguous:
al0,0], a[0,1],...,a[0,n],a[1,0],...,a[m,n]

F-contiguous:
al0,0], a[1,0],...,am,0],al0,1],...,a[m,n|

	NumPy
	Pandas
	Beyond
	Backup

