
Lecture

June 27, 2025

1 Scientific Programming with Python:

2 Data structures - NumPy, Pandas & beyond
Federica Lionetto (federica.lionetto@gmail.com)

The content of the lecture might be reused, also in parts, under the CC-licence by-sa 4.0

2.1 NumPy
2.1.1 NumPy vs. standard Python, need for speed

[1]: # Creating a standard Python list
L = list(range(1000))

[2]: # How long does it take to calculate the element-wise square?
%timeit [i**2 for i in L]

44.7 �s ± 1.72 �s per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

[3]: # Now do the same with a NumPy array
import numpy as np
a = np.arange(1000)

[4]: %timeit a**2

937 ns ± 24.9 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

2.1.2 Details about NumPy

[5]: np.__version__

[5]: '2.2.4'

[6]: np.show_config()

Build Dependencies:
blas:
detection method: pkgconfig
found: true

1

include directory: /usr/include/x86_64-linux-gnu
lib directory: /usr/lib/x86_64-linux-gnu
name: blas
openblas configuration: unknown
pc file directory: /usr/lib/x86_64-linux-gnu/pkgconfig
version: 3.12.1

lapack:
detection method: pkgconfig
found: true
include directory: /usr/include/x86_64-linux-gnu
lib directory: /usr/lib/x86_64-linux-gnu
name: lapack
openblas configuration: unknown
pc file directory: /usr/lib/x86_64-linux-gnu/pkgconfig
version: 3.12.1

Compilers:
c:
args: -g, -O2, -Werror=implicit-function-declaration, -ffile-prefix-

map=$BUILDDIR=.,
-fstack-protector-strong, -fstack-clash-protection, -Wformat,

-Werror=format-security,
-fcf-protection, -Wdate-time, -D_FORTIFY_SOURCE=2

commands: cc
linker: ld.bfd
linker args: -Wl,-z,relro, -g, -O2, -Werror=implicit-function-declaration,

-ffile-prefix-map=$BUILDDIR=.,
-fstack-protector-strong, -fstack-clash-protection, -Wformat,

-Werror=format-security,
-fcf-protection, -Wdate-time, -D_FORTIFY_SOURCE=2

name: gcc
version: 14.2.0

c++:
args: -g, -O2, -ffile-prefix-map=$BUILDDIR=., -fstack-protector-strong,

-fstack-clash-protection,
-Wformat, -Werror=format-security, -fcf-protection, -Wdate-time,

-D_FORTIFY_SOURCE=2
commands: c++
linker: ld.bfd
linker args: -Wl,-z,relro, -g, -O2, -ffile-prefix-map=$BUILDDIR=., -fstack-

protector-strong,
-fstack-clash-protection, -Wformat, -Werror=format-security, -fcf-

protection,
-Wdate-time, -D_FORTIFY_SOURCE=2

name: gcc
version: 14.2.0

cython:
commands: cython
linker: cython

2

name: cython
version: 3.0.11

Machine Information:
build:
cpu: x86_64
endian: little
family: x86_64
system: linux

host:
cpu: x86_64
endian: little
family: x86_64
system: linux

SIMD Extensions:
baseline:
- SSE
- SSE2
- SSE3
found:
- SSSE3
- SSE41
- POPCNT
- SSE42
- AVX
- F16C
- FMA3
- AVX2
not found:
- AVX512F
- AVX512CD
- AVX512_KNL
- AVX512_KNM
- AVX512_SKX
- AVX512_CLX
- AVX512_CNL
- AVX512_ICL
- AVX512_SPR

BLAS: Basic Linear Algebra Subprograms
LAPACK: Linear Algebra Package

2.1.3 Creating NumPy arrays

[7]: a = np.array([1,2,4])
print(a)

[1 2 4]

3

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK

[8]: b = np.arange(1,15,3)
print(b)

[1 4 7 10 13]

Note: You should not use np.arange to create arrays containing floating point numbers. arange
uses a == comparison for the last element. This can be affected by floating-point imprecisions.

[9]: c = np.linspace(0,1,6)
print(c)

[0. 0.2 0.4 0.6 0.8 1.]

[10]: d = np.empty((1,3))
print(d)

[[3.37887e-319 0.00000e+000 0.00000e+000]]

[11]: e = np.zeros((2,5,3))
print(e)

[[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]]

[12]: f = np.ones((3,3))
print(f)

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

[13]: g = np.eye(4)
print(g)

[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

[14]: h = np.identity(4)
print(h)

4

[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

[15]: i = np.diag(np.array([1,2,3,4]))
print(i)

[[1 0 0 0]
[0 2 0 0]
[0 0 3 0]
[0 0 0 4]]

[16]: l = np.diag(np.array([1,2,3,4]),k=-1)
print(l)

[[0 0 0 0 0]
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]]

[17]: m = np.diag(np.array([1,2,3,4]),k=2)
print(m)

[[0 0 1 0 0 0]
[0 0 0 2 0 0]
[0 0 0 0 3 0]
[0 0 0 0 0 4]
[0 0 0 0 0 0]
[0 0 0 0 0 0]]

[18]: # arrays = [a,b,c,d,e,f,g,h,i,l,m]
for array in arrays :
print(array)
print('')

2.1.4 NumPy arrays of random numbers

[19]: a = np.random.rand(4)
b = np.random.rand(4,3)
c = np.random.randint(1,3,(2,3))
d = np.random.randn(4,5)
e = np.random.poisson(3,5)

arrays = [a,b,c,d,e]
for array in arrays :

print(array)
print('')

5

[0.79675125 0.79834459 0.80720566 0.84975774]

[[0.39868422 0.75006983 0.46613861]
[0.63299908 0.72617476 0.73996072]
[0.77651208 0.15466578 0.38101609]
[0.30016638 0.79985435 0.48315564]]

[[2 1 2]
[1 1 2]]

[[0.75524 -0.36309407 -0.62805736 1.8463238 0.27922017]
[-1.38953922 -0.97571376 0.70919036 -2.82000355 -1.12213861]
[-1.05716836 1.66680457 2.3606188 -0.37471271 0.85836016]
[-0.45245693 0.06581539 -1.21390832 -1.21211947 -0.11421357]]

[4 7 4 6 8]

[20]: # Random seed
np.random.seed(1)
arr1 = np.random.rand(5)
print('Array with 5 elements, random seed 10:')
print(arr1)

Array with 5 elements, random seed 10:
[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01
1.46755891e-01]

[21]: arr2 = np.random.rand(10)
print('Array with 10 elements, random seed not set:')
print(arr2)

Array with 10 elements, random seed not set:
[0.09233859 0.18626021 0.34556073 0.39676747 0.53881673 0.41919451
0.6852195 0.20445225 0.87811744 0.02738759]

[22]: np.random.seed(1)
arr3 = np.random.rand(10)
print('Array with 10 elements, random seed 10:')
print(arr3)

Array with 10 elements, random seed 10:
[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01
1.46755891e-01 9.23385948e-02 1.86260211e-01 3.45560727e-01
3.96767474e-01 5.38816734e-01]

6

2.1.5 Basic operations

[23]: a = np.random.rand(3,4)
b = np.random.rand(3,4)
print(a)
print('')
print(b)

[[0.41919451 0.6852195 0.20445225 0.87811744]
[0.02738759 0.67046751 0.4173048 0.55868983]
[0.14038694 0.19810149 0.80074457 0.96826158]]

[[0.31342418 0.69232262 0.87638915 0.89460666]
[0.08504421 0.03905478 0.16983042 0.8781425]
[0.09834683 0.42110763 0.95788953 0.53316528]]

[24]: a+b

[24]: array([[0.73261869, 1.37754212, 1.0808414 , 1.7727241],
[0.1124318 , 0.70952229, 0.58713522, 1.43683233],
[0.23873377, 0.61920911, 1.7586341 , 1.50142686]])

[25]: a-b

[25]: array([[0.10577034, -0.00710312, -0.6719369 , -0.01648923],
[-0.05765662, 0.63141273, 0.24747438, -0.31945267],
[0.0420401 , -0.22300614, -0.15714496, 0.43509629]])

[26]: a*b

[26]: array([[0.1313857 , 0.47439296, 0.17917973, 0.78556971],
[0.00232916, 0.02618496, 0.07087105, 0.49060928],
[0.01380661, 0.08342205, 0.76702484, 0.51624346]])

[27]: a/b

[27]: array([[1.33746706, 0.98974017, 0.23328934, 0.98156818],
[0.32203948, 17.16735966, 2.45718525, 0.63621773],
[1.4274678 , 0.47042959, 0.83594668, 1.81606268]])

[28]: # Add 3.0 to every element
a+3.0

[28]: array([[3.41919451, 3.6852195 , 3.20445225, 3.87811744],
[3.02738759, 3.67046751, 3.4173048 , 3.55868983],
[3.14038694, 3.19810149, 3.80074457, 3.96826158]])

[29]: # Conditions
a>b

7

[29]: array([[True, False, False, False],
[False, True, True, False],
[True, False, False, True]])

[30]: a.min()

[30]: np.float64(0.027387593197926163)

[31]: a.min(axis=0)

[31]: array([0.02738759, 0.19810149, 0.20445225, 0.55868983])

[32]: a.min(axis=1)

[32]: array([0.20445225, 0.02738759, 0.14038694])

[33]: # Numpy has its own set of functions
np.exp(b)

[33]: array([[1.36810173, 1.99835155, 2.40221001, 2.44637335],
[1.0887652 , 1.03982745, 1.18510386, 2.40642563],
[1.1033454 , 1.52364825, 2.60619038, 1.70431843]])

[34]: # Numpy has its own set of functions
np.cos(b)

[34]: array([[0.95128341, 0.7697655 , 0.63993001, 0.62582565],
[0.99638592, 0.99923746, 0.98561344, 0.63858169],
[0.99516785, 0.91263673, 0.57524759, 0.86120259]])

[35]: # Functions in the math library are not able to handle multi-element data
import math
math.exp(b)

TypeError Traceback (most recent call last)
Cell In[35], line 3

1 # Functions in the math library are not able to handle multi-element data
2 import math

----> 3 math.exp(b)

TypeError: only length-1 arrays can be converted to Python scalars

8

2.1.6 Data representation

[36]: a = np.array([1,0,-2],dtype=np.int64)
print(a)

[1 0 -2]

[37]: b = np.array(a,dtype=np.int8)
print(b)

[1 0 -2]

[38]: c = np.array(a,dtype=int) # the default python int
print(c)

[1 0 -2]

[39]: d = np.array(a,dtype=np.float64)
print(d)

[1. 0. -2.]

[40]: e = np.array(a,dtype=np.bool)
print(e)

[True False True]

[41]: e.dtype

[41]: dtype('bool')

[42]: print('3 elements np.int64 correspond to', a.nbytes, 'bytes')
print('3 elements np.int8 correspond to', b.nbytes, 'bytes')
print('3 elements np.int correspond to', c.nbytes, 'bytes')
print('3 elements np.float64 correspond to', d.nbytes, 'bytes')
print('3 elements np.bool correspond to', e.nbytes, 'bytes')

3 elements np.int64 correspond to 24 bytes
3 elements np.int8 correspond to 3 bytes
3 elements np.int correspond to 24 bytes
3 elements np.float64 correspond to 24 bytes
3 elements np.bool correspond to 3 bytes

[43]: a = np.ones((3,4),dtype=np.int8)
b = np.ones((3,4),dtype=np.int64)

[44]: print('np.int8 bytes:')
print([hex(el) for el in a.tobytes(order='A')])
print('')
print('np.int64 bytes:')
print([hex(el) for el in b.tobytes(order='A')])

9

np.int8 bytes:
['0x1', '0x1', '0x1', '0x1', '0x1', '0x1', '0x1', '0x1', '0x1', '0x1', '0x1',
'0x1']

np.int64 bytes:
['0x1', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x1', '0x0', '0x0',
'0x0', '0x0', '0x0', '0x0', '0x0', '0x1', '0x0', '0x0', '0x0', '0x0', '0x0',
'0x0', '0x0', '0x1', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x1',
'0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x1', '0x0', '0x0', '0x0',
'0x0', '0x0', '0x0', '0x0', '0x1', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0',
'0x0', '0x1', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x1', '0x0',
'0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x1', '0x0', '0x0', '0x0', '0x0',
'0x0', '0x0', '0x0', '0x1', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0',
'0x1', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0']

[45]: 16*16-1

[45]: 255

[46]: # in numpy < 2.0, the following line silently overflows, leading to unexpected␣
↪entries

in numpy >= 2.0, an OverflowError is raised
a = np.array([1,10,11,16,255,256],dtype=np.uint8)
print(a) # array([1, 10, 11, 16, 255, 0] in numpy < 2.0
b = np.array([1,10,11,16,255,256],dtype=np.int64)
print(b)

OverflowError Traceback (most recent call last)
Cell In[46], line 3

1 # in numpy < 2.0, the following line silently overflows, leading to␣
↪unexpected entries

2 # in numpy >= 2.0, an OverflowError is raised
----> 3 a = np.array([1,10,11,16,255,256],dtype=np.uint8)

4 print(a) # array([1, 10, 11, 16, 255, 0] in numpy < 2.0
5 b = np.array([1,10,11,16,255,256],dtype=np.int64)

OverflowError: Python integer 256 out of bounds for uint8

[47]: # even in numpy >= 2.0 you are not totaly safe though:
c = np.array([1,10,11,16,255],dtype=np.uint8)+1
print(c)

[2 11 12 17 0]

10

2.1.7 Data structure

[48]: a = np.ones((3,4),dtype=np.int8)
b = np.ones((3,4),dtype=np.int64)

[49]: print(a.ndim)
print(a.shape)
print(a.size)
print(a.itemsize)

2
(3, 4)
12
1

[50]: print(b.ndim)
print(b.shape)
print(b.size)
print(b.itemsize)

2
(3, 4)
12
8

[51]: print(a.nbytes)
print(b.nbytes)

12
96

[52]: print(a.data)

<memory at 0x7f86bb9a25a0>

[53]: print(a.data.tobytes())
print(a.tobytes())

b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01'
b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01'

[54]: print(a.flags)
print('')
print(a.T.flags)

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

11

C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

[55]: print(a.strides)
print(b.strides)
print(a.T.strides)

(4, 1)
(32, 8)
(1, 4)

2.1.8 Shape manipulation

[56]: # Let's define an array of values distributed according to a Normal distribution
a = np.random.randn(3,4)
print(a)

[[-1.10061918 1.14472371 0.90159072 0.50249434]
[0.90085595 -0.68372786 -0.12289023 -0.93576943]
[-0.26788808 0.53035547 -0.69166075 -0.39675353]]

[57]: print(a.reshape(1,12))
print('')
print(a)

[[-1.10061918 1.14472371 0.90159072 0.50249434 0.90085595 -0.68372786
-0.12289023 -0.93576943 -0.26788808 0.53035547 -0.69166075 -0.39675353]]

[[-1.10061918 1.14472371 0.90159072 0.50249434]
[0.90085595 -0.68372786 -0.12289023 -0.93576943]
[-0.26788808 0.53035547 -0.69166075 -0.39675353]]

[58]: print(a.resize(1,12))
print('')
print(a)

None

[[-1.10061918 1.14472371 0.90159072 0.50249434 0.90085595 -0.68372786
-0.12289023 -0.93576943 -0.26788808 0.53035547 -0.69166075 -0.39675353]]

12

[59]: # Need to define a as in the beginning again
a = np.random.randn(3,4)
print(a)

[[-0.6871727 -0.84520564 -0.67124613 -0.0126646]
[-1.11731035 0.2344157 1.65980218 0.74204416]
[-0.19183555 -0.88762896 -0.74715829 1.6924546]]

[60]: print(a.ravel())
print('')
print(a)

[-0.6871727 -0.84520564 -0.67124613 -0.0126646 -1.11731035 0.2344157
1.65980218 0.74204416 -0.19183555 -0.88762896 -0.74715829 1.6924546]

[[-0.6871727 -0.84520564 -0.67124613 -0.0126646]
[-1.11731035 0.2344157 1.65980218 0.74204416]
[-0.19183555 -0.88762896 -0.74715829 1.6924546]]

[61]: print(a.T)

[[-0.6871727 -1.11731035 -0.19183555]
[-0.84520564 0.2344157 -0.88762896]
[-0.67124613 1.65980218 -0.74715829]
[-0.0126646 0.74204416 1.6924546]]

[62]: # Bad practices
b = np.random.randn(4)
print(b.shape)
print(b.T.shape)

(4,)
(4,)

[63]: # Good practices
c = np.random.randn(4,1)
print(c.shape)
print(c.T.shape)

(4, 1)
(1, 4)

2.1.9 Accessing array elements

[64]: a = np.ones((3,4),dtype=np.int64)
print(a)

[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]

13

[65]: b = a

[66]: a[0,0]=0

[67]: print(b)

[[0 1 1 1]
[1 1 1 1]
[1 1 1 1]]

[68]: c = a.copy()

[69]: a[1,1]=0

[70]: print(a)

[[0 1 1 1]
[1 0 1 1]
[1 1 1 1]]

[71]: print(c)

[[0 1 1 1]
[1 1 1 1]
[1 1 1 1]]

[72]: print(b)

[[0 1 1 1]
[1 0 1 1]
[1 1 1 1]]

2.1.10 Get the data

[73]: # Let's have a look at the loadEx.txt file
!head loadEx.txt

94.820 76.280 33.020 29.660 25.460
91.610 71.480 31.710 29.610 25.460
94.820 68.130 32.630 31.460 25.910
93.190 71.050 35.250 31.780 27.020
92.780 71.320 35.950 32.700 27.490
96.460 72.880 35.780 32.240 26.750
97.280 73.260 35.160 31.640 26.500
97.690 72.880 35.250 31.780 26.410
96.660 72.990 35.250 31.270 26.650
97.790 73.960 34.750 32.470 26.480

[74]: data = np.loadtxt('loadEx.txt',delimiter=' ',comments="#")

14

[75]: print(data)

[[94.82 76.28 33.02 29.66 25.46]
[91.61 71.48 31.71 29.61 25.46]
[94.82 68.13 32.63 31.46 25.91]
…
[160.51 196.19 166.71 132.29 113.32]
[160.05 195.71 165.84 131.83 113.11]
[160.44 193.83 164.32 129.98 112.18]]

[76]: print(data.shape)

(3773, 5)

[77]: data[0,1]

[77]: np.float64(76.28)

[78]: # A more complex example
dt = np.dtype([('name','S7'),('mass',np.float32),
('position',[('x',np.float32),('y',np.float32),('z',np.float32)]),
('velocity',[('x',np.float32),('y',np.float32),('z',np.float32)])])

[79]: solarData = np.loadtxt('Solar.txt',dtype=dt)

[80]: print(solarData)

[(b'Sun', 3.3294600e+05, (2.13e-03, -1.60e-03, -1.20e-04), (5.01e-06,
4.08e-06, -1.24e-07))
(b'Mercury', 5.5273525e-02, (1.62e-01, 2.64e-01, 6.94e-03), (-2.97e-02,
1.56e-02, 4.00e-03))
(b'Venus', 8.1499749e-01, (3.02e-01, 6.54e-01, -8.44e-03), (-1.85e-02,
8.32e-03, 1.18e-03))
(b'Earth', 1.0000000e+00, (5.66e-01, -8.46e-01, -9.12e-05), (1.40e-02,
9.49e-03, -5.81e-07))
(b'Mars', 1.0744685e-01, (-4.34e-01, -1.43e+00, -1.93e-02), (1.39e-02,
-2.88e-03, -4.02e-04))
(b'Jupiter', 3.1782812e+02, (-2.78e+00, 4.47e+00, 4.35e-02), (-6.50e-03,
-3.62e-03, 1.61e-04))
(b'Saturn', 9.5160904e+01, (-6.08e+00, -7.84e+00, 3.78e-01), (4.10e-03,
-3.43e-03, -1.04e-04))
(b'Uranus', 1.4535757e+01, (1.95e+01, 4.68e+00, -2.35e-01), (-9.48e-04,
3.64e-03, 2.58e-05))
(b'Neptune', 1.7146999e+01, (2.73e+01, -1.23e+01, -3.77e-01), (1.27e-03,
2.88e-03, -8.85e-05))
(b'Pluto', 2.1909999e-03, (6.91e+00, -3.19e+01, 1.42e+00), (3.14e-03,
3.08e-05, -9.18e-04))
(b'Halley', 3.6800001e-11, (-2.05e+01, 2.51e+01, -9.76e+00), (-7.71e-05,
9.54e-04, -1.79e-04))

15

(b'Moon', 1.2303100e-02, (5.64e-01, -8.44e-01, -3.23e-04), (1.36e-02,
9.18e-03, 8.97e-06))]

[81]: solarData['name']

[81]: array([b'Sun', b'Mercury', b'Venus', b'Earth', b'Mars', b'Jupiter',
b'Saturn', b'Uranus', b'Neptune', b'Pluto', b'Halley', b'Moon'],
dtype='|S7')

[82]: solarData['position']['x']

[82]: array([2.13e-03, 1.62e-01, 3.02e-01, 5.66e-01, -4.34e-01, -2.78e+00,
-6.08e+00, 1.95e+01, 2.73e+01, 6.91e+00, -2.05e+01, 5.64e-01],
dtype=float32)

[83]: solarData['position']['x'][np.where(solarData['name']==b'Sun')]

[83]: array([0.00213], dtype=float32)

2.1.11 Broadcasting

[84]: a = np.random.rand(3,5)
b = np.random.rand(8)

[85]: c = a[...,np.newaxis]*b
print(c.shape)

(3, 5, 8)

[86]: d = np.random.rand(1,10)
e = np.random.rand(10,1)
print(d.shape)
print(d)
print('')
print(e.shape)
print(e)

(1, 10)
[[0.57367949 0.00287033 0.61714491 0.3266449 0.5270581 0.8859421

0.35726976 0.90853515 0.62336012 0.01582124]]

(10, 1)
[[0.92943723]
[0.69089692]
[0.99732285]
[0.17234051]
[0.13713575]
[0.93259546]
[0.69681816]

16

[0.06600017]
[0.75546305]
[0.75387619]]

[87]: # Explicit broadcasting.
dd,ee = np.broadcast_arrays(d,e)
print(dd.shape)
print(ee.shape)

(10, 10)
(10, 10)

[88]: d[0,0]=-1.0

[89]: dd

[89]: array([[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124],

[-1. , 0.00287033, 0.61714491, 0.3266449 , 0.5270581 ,
0.8859421 , 0.35726976, 0.90853515, 0.62336012, 0.01582124]])

[90]: # ee

[91]: print(dd.strides)
print(ee.strides)

(0, 8)
(8, 0)

17

2.1.12 Simple indexing

[92]: # Notice that this does not use additional memory!!!
a = np.arange(100).reshape(10,10)

[93]: # Access rows
a[4:9]

[93]: array([[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89]])

[94]: # Access columns
a[:,3:8]

[94]: array([[3, 4, 5, 6, 7],
[13, 14, 15, 16, 17],
[23, 24, 25, 26, 27],
[33, 34, 35, 36, 37],
[43, 44, 45, 46, 47],
[53, 54, 55, 56, 57],
[63, 64, 65, 66, 67],
[73, 74, 75, 76, 77],
[83, 84, 85, 86, 87],
[93, 94, 95, 96, 97]])

[95]: # Negative indices
a[:,-1]

[95]: array([9, 19, 29, 39, 49, 59, 69, 79, 89, 99])

[96]: # Ranges
a[-2::-3,1:6:2]

[96]: array([[81, 83, 85],
[51, 53, 55],
[21, 23, 25]])

2.1.13 Fancy indexing

[97]: a[:,[1,3,1]]

[97]: array([[1, 3, 1],
[11, 13, 11],
[21, 23, 21],
[31, 33, 31],

18

[41, 43, 41],
[51, 53, 51],
[61, 63, 61],
[71, 73, 71],
[81, 83, 81],
[91, 93, 91]])

[98]: a[[1,3,1]][:,[1,3,1]]

[98]: array([[11, 13, 11],
[31, 33, 31],
[11, 13, 11]])

[99]: a[[1,3,1],[1,3,1]]

[99]: array([11, 33, 11])

[100]: # Multidimensional arrays indexed by multidimensional arrays.
y = np.arange(35).reshape(5,7)
print(y)

[[0 1 2 3 4 5 6]
[7 8 9 10 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]]

[101]: # If the index arrays have a matching shape,
and there is an index array for each dimension of the array being indexed,
the resultant array has the same shape as the index arrays,
and the values correspond to the index set for each position in the index␣

↪arrays.
[0,0], [2,1], and [4,2] elements of the indexed array.
y[np.array([0,2,4]), np.array([0,1,2])]

[101]: array([0, 15, 30])

[102]: # If the index arrays do not have the same shape, a broadcasting is tried.
[0,1], [2,1], and [4,1] elements of the indexed array.
y[np.array([0,2,4]), 1]

[102]: array([1, 15, 29])

[103]: # If we provide just one index array, the rows are selected but the columns are␣
↪kept as they were in the indexed array.

y[np.array([0,2,4])]

19

[103]: array([[0, 1, 2, 3, 4, 5, 6],
[14, 15, 16, 17, 18, 19, 20],
[28, 29, 30, 31, 32, 33, 34]])

[104]: # Fancy indexing.
i0 = np.random.randint(0,10,(8,1,8)) # Matrix of random integers between 0 and␣

↪10 with shape (8,1,8).
i1 = np.random.randint(0,10,(2,8)) # Matrix of random integers between 0 and 10␣

↪with shape (2,8).

[105]: a[i0,i1] # creates a 8×2×8 array

[105]: array([[[80, 92, 28, 72, 51, 54, 40, 54],
[81, 97, 23, 71, 56, 56, 49, 56]],

[[80, 52, 88, 12, 11, 84, 70, 4],
[81, 57, 83, 11, 16, 86, 79, 6]],

[[30, 42, 28, 2, 31, 54, 10, 24],
[31, 47, 23, 1, 36, 56, 19, 26]],

[[40, 32, 8, 62, 1, 74, 20, 84],
[41, 37, 3, 61, 6, 76, 29, 86]],

[[30, 2, 88, 42, 21, 94, 0, 34],
[31, 7, 83, 41, 26, 96, 9, 36]],

[[80, 12, 48, 32, 31, 64, 70, 34],
[81, 17, 43, 31, 36, 66, 79, 36]],

[[50, 32, 28, 42, 41, 4, 30, 34],
[51, 37, 23, 41, 46, 6, 39, 36]],

[[80, 32, 58, 62, 71, 54, 10, 74],
[81, 37, 53, 61, 76, 56, 19, 76]]])

[106]: a[i0,i1].shape

[106]: (8, 2, 8)

[107]: i0[0,0,0]

[107]: np.int64(8)

[108]: i1[0,0]

[108]: np.int64(0)

20

[109]: a[8,0]

[109]: np.int64(80)

[110]: i0[1,0,0]

[110]: np.int64(8)

[111]: i1[0,0]

[111]: np.int64(0)

[112]: a[7,7]

[112]: np.int64(77)

3 Pandas
[113]: import pandas as pd

[114]: !head SMI.csv

Date,Open,High,Low,Close,Adj Close,Volume
1990-11-09,1378.900024,1389.0,1375.300049,1387.099976,1387.099976,0.0
1990-11-12,1388.099976,1408.099976,1388.099976,1407.5,1407.5,0.0
1990-11-13,1412.199951,1429.400024,1411.400024,1415.199951,1415.199951,0.0
1990-11-14,1413.599976,1413.599976,1402.099976,1410.300049,1410.300049,0.0
1990-11-15,1410.599976,1416.699951,1405.099976,1405.699951,1405.699951,0.0
1990-11-16,1405.699951,1407.400024,1389.400024,1395.199951,1395.199951,0.0
1990-11-19,1395.599976,1417.900024,1395.599976,1416.0,1416.0,0.0
1990-11-20,1414.800049,1415.0,1404.699951,1405.800049,1405.800049,0.0
1990-11-21,1405.599976,1405.599976,1396.699951,1398.400024,1398.400024,0.0

3.0.1 Loading of data and basic manipulation

[115]: # Series object
s = pd.Series([1,3,5,np.nan,6,8])
print(s)
print(type(s))

0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
<class 'pandas.core.series.Series'>

21

[116]: # Dataframe object
ts = pd.read_csv('SMI.csv')

[117]: type(ts)

[117]: pandas.core.frame.DataFrame

[118]: ts.head()

[118]: Date Open High Low Close \
0 1990-11-09 1378.900024 1389.000000 1375.300049 1387.099976
1 1990-11-12 1388.099976 1408.099976 1388.099976 1407.500000
2 1990-11-13 1412.199951 1429.400024 1411.400024 1415.199951
3 1990-11-14 1413.599976 1413.599976 1402.099976 1410.300049
4 1990-11-15 1410.599976 1416.699951 1405.099976 1405.699951

Adj Close Volume
0 1387.099976 0.0
1 1407.500000 0.0
2 1415.199951 0.0
3 1410.300049 0.0
4 1405.699951 0.0

[119]: ts.tail()

[119]: Date Open High Low Close \
6738 2017-08-28 8864.230469 8864.230469 8864.230469 8864.230469
6739 2017-08-29 8814.540039 8814.540039 8814.540039 8814.540039
6740 2017-08-30 8851.259766 8851.259766 8851.259766 8851.259766
6741 2017-08-31 8925.450195 8925.450195 8925.450195 8925.450195
6742 2017-09-01 8941.620117 8941.620117 8941.620117 8941.620117

Adj Close Volume
6738 8864.230469 0.0
6739 8814.540039 0.0
6740 8851.259766 0.0
6741 8925.450195 0.0
6742 8941.620117 0.0

[120]: ts.index

[120]: RangeIndex(start=0, stop=6743, step=1)

[121]: ts.columns

[121]: Index(['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
dtype='object')

22

[122]: ts['Open'][:10].values

[122]: array([1378.900024, 1388.099976, 1412.199951, 1413.599976, 1410.599976,
1405.699951, 1395.599976, 1414.800049, 1405.599976, 1400.])

[123]: ts = ts.sort_values('Date')
ts.head()

[123]: Date Open High Low Close \
0 1990-11-09 1378.900024 1389.000000 1375.300049 1387.099976
1 1990-11-12 1388.099976 1408.099976 1388.099976 1407.500000
2 1990-11-13 1412.199951 1429.400024 1411.400024 1415.199951
3 1990-11-14 1413.599976 1413.599976 1402.099976 1410.300049
4 1990-11-15 1410.599976 1416.699951 1405.099976 1405.699951

Adj Close Volume
0 1387.099976 0.0
1 1407.500000 0.0
2 1415.199951 0.0
3 1410.300049 0.0
4 1405.699951 0.0

[124]: # Find minimum and maximum values in a given column
print(ts['Volume'].min())
print(ts['Volume'].max())

0.0
346767700.0

[125]: # Find index corresponding to mininum and maximum values in a given column
Careful!!!
print(ts['Volume'].idxmin())
print(ts['Volume'].idxmax())

0
6079

[126]: # Access rows
ts[6079:6080]

[126]: Date Open High Low Close \
6079 2015-01-15 9259.200195 9277.200195 7932.200195 8400.599609

Adj Close Volume
6079 8400.599609 346767700.0

[127]: # Modify index
ts.index = pd.to_datetime(ts.pop("Date"))

23

[128]: ts = ts.sort_index()

[129]: ts.tail()

[129]: Open High Low Close Adj Close \
Date
2017-08-28 8864.230469 8864.230469 8864.230469 8864.230469 8864.230469
2017-08-29 8814.540039 8814.540039 8814.540039 8814.540039 8814.540039
2017-08-30 8851.259766 8851.259766 8851.259766 8851.259766 8851.259766
2017-08-31 8925.450195 8925.450195 8925.450195 8925.450195 8925.450195
2017-09-01 8941.620117 8941.620117 8941.620117 8941.620117 8941.620117

Volume
Date
2017-08-28 0.0
2017-08-29 0.0
2017-08-30 0.0
2017-08-31 0.0
2017-09-01 0.0

[130]: import datetime as dt
ts[ts.index>dt.datetime(2010,1,1)].head()

[130]: Open High Low Close Adj Close \
Date
2010-01-04 6578.500000 6631.399902 6576.000000 6631.399902 6631.399902
2010-01-05 6620.700195 6622.399902 6547.399902 6579.299805 6579.299805
2010-01-06 6598.200195 6607.799805 6550.100098 6559.399902 6559.399902
2010-01-07 6536.500000 6574.200195 6494.899902 6555.399902 6555.399902
2010-01-08 6574.700195 6635.799805 6574.000000 6617.899902 6617.899902

Volume
Date
2010-01-04 59150000.0
2010-01-05 65848500.0
2010-01-06 52305400.0
2010-01-07 64539000.0
2010-01-08 74761300.0

[131]: ts["Adj Close"].head()

[131]: Date
1990-11-09 1387.099976
1990-11-12 1407.500000
1990-11-13 1415.199951
1990-11-14 1410.300049
1990-11-15 1405.699951

24

Name: Adj Close, dtype: float64

[132]: ts["Adj Close"].describe()

[132]: count 6743.000000
mean 5957.266658
std 2236.843089
min 1287.599976
25% 4561.000000
50% 6374.700195
75% 7790.649902
max 9531.500000
Name: Adj Close, dtype: float64

[133]: # Access parameters of describe
ts['Adj Close'].describe()['count']

[133]: np.float64(6743.0)

3.0.2 Timeseries applications

[134]: # Resampling of time series
Creating a series with 9 timestamps, each one corresponding to one minute
index = pd.date_range('1/6/2018', periods=9, freq='min')
series = pd.Series(range(9), index=index)
print(series)

2018-01-06 00:00:00 0
2018-01-06 00:01:00 1
2018-01-06 00:02:00 2
2018-01-06 00:03:00 3
2018-01-06 00:04:00 4
2018-01-06 00:05:00 5
2018-01-06 00:06:00 6
2018-01-06 00:07:00 7
2018-01-06 00:08:00 8
Freq: min, dtype: int64

[135]: # Downsample the series in bins of 3 minutes each and sum over the same bin
series.resample('3min').sum()

[135]: 2018-01-06 00:00:00 3
2018-01-06 00:03:00 12
2018-01-06 00:06:00 21
Freq: 3min, dtype: int64

[136]: # Label the bin using the upper bound
series.resample('3min', label='right').sum()

25

[136]: 2018-01-06 00:03:00 3
2018-01-06 00:06:00 12
2018-01-06 00:09:00 21
Freq: 3min, dtype: int64

[137]: # DataFrame.resample(rule, axis=0)
The object must have a datetime-like index
ts_monthly = ts["Adj Close"].resample("ME").

↪apply(["median","mean","std","count","max","min"]).head()

[138]: ts_monthly

[138]: median mean std count max \
Date
1990-11-30 1392.000000 1390.387497 20.156853 16 1416.000000
1990-12-31 1405.349976 1404.744446 21.675076 18 1450.300049
1991-01-31 1350.000000 1357.580956 44.510815 21 1438.599976
1991-02-28 1538.799988 1530.924988 50.931718 20 1603.199951
1991-03-31 1614.649964 1611.519995 24.735199 20 1650.599976

min
Date
1990-11-30 1353.699951
1990-12-31 1371.199951
1991-01-31 1287.599976
1991-02-28 1448.099976
1991-03-31 1559.000000

3.0.3 Basic visualisation

[139]: day_return = ts["Adj Close"].pct_change().dropna()
mean_30day = day_return.rolling(30).mean()

import numpy as np

minmax_30day = day_return.rolling(30).apply(lambda x: (np.max(x)+np.min(x))*0.5)

mean_30day.resample("ME").apply(["mean"]).plot()
minmax_30day.resample("ME").apply(["mean"]).plot()

import matplotlib.pyplot as plt
plt.show()

26

27

3.0.4 Creating timeseries and filling missing values

[140]: dates = pd.date_range(ts.index.min(),ts.index.max(),freq="D")
print(dates)

DatetimeIndex(['1990-11-09', '1990-11-10', '1990-11-11', '1990-11-12',
'1990-11-13', '1990-11-14', '1990-11-15', '1990-11-16',
'1990-11-17', '1990-11-18',
…
'2017-08-23', '2017-08-24', '2017-08-25', '2017-08-26',
'2017-08-27', '2017-08-28', '2017-08-29', '2017-08-30',
'2017-08-31', '2017-09-01'],
dtype='datetime64[ns]', length=9794, freq='D')

[141]: ts_alldays = pd.Series(index=dates,data=ts["Adj Close"])

[142]: ts_alldays.head()

[142]: 1990-11-09 1387.099976
1990-11-10 NaN
1990-11-11 NaN

28

1990-11-12 1407.500000
1990-11-13 1415.199951
Freq: D, Name: Adj Close, dtype: float64

[143]: ts_alldays.ffill(inplace=True)
ts_alldays.head()

[143]: 1990-11-09 1387.099976
1990-11-10 1387.099976
1990-11-11 1387.099976
1990-11-12 1407.500000
1990-11-13 1415.199951
Freq: D, Name: Adj Close, dtype: float64

3.0.5 Hook up to data sources

http://pandas-datareader.readthedocs.io/en/latest/

[144]: # pd.__version__

[145]: # pip install pandas-datareader

[146]: version = [int(v) for v in pd.__version__.split('.')]
if (version[0] == 0 and version[1] >= 17) or (version[0] >= 1): # Test if␣

↪version is >= 0.17
from pandas_datareader import data, wb

else:
from pandas.io import data, wb

[147]: # Retrieve information from FRED
import datetime
start = datetime.datetime(2010, 1, 1)
end = datetime.datetime(2018, 1, 1)
df = data.DataReader('F', 'google', start, end)
df = data.DataReader('GDP', 'fred', start, end)
print(df.shape)
print(df.head())
print(df.tail())

(33, 1)
GDP

DATE
2010-01-01 14764.610
2010-04-01 14980.193
2010-07-01 15141.607
2010-10-01 15309.474
2011-01-01 15351.448

GDP

29

DATE
2017-01-01 19280.084
2017-04-01 19438.643
2017-07-01 19692.595
2017-10-01 20037.088
2018-01-01 20328.553

[148]: # Let's say we want to compare the Gross Domestic Products per capita in␣
↪constant dollars in North America

wb.search('gdp.*capita.*const')

3.0.6 Spreadsheet operations

[149]: # Let's use the download function to acquire the data from the World Bank’s␣
↪servers

gdp_data = wb.download(indicator='NY.GDP.PCAP.
↪KD',country=['CH','US','GB','DE'],start=2006,end=2016)

gdp_data.head(20)

[150]: # gdp_data.shape

[151]: # gdp_data.columns

[152]: # gdp_data.unstack(level=0)

[153]: # gdp_data.unstack(level=1)

[154]: # gdp_data.groupby(level=0).mean()

[155]: # gdp_data.groupby(level=0).std()

3.0.7 And some further work with Dataframes

[156]: df_us_zip = pd.read_csv("us_postal_codes.csv")

[157]: df_us_zip.shape

[157]: (40933, 7)

[158]: df_us_zip.columns

[158]: Index(['Zip Code', 'Place Name', 'State', 'State Abbreviation', 'County',
'Latitude', 'Longitude'],
dtype='object')

[159]: df_us_zip.describe()

30

[159]: Zip Code Latitude Longitude
count 40933.000000 40933.000000 40933.000000
mean 49819.569858 38.596225 -91.082332
std 27808.948650 5.255750 15.763730
min 501.000000 7.112800 -176.658100
25% 26451.000000 35.052600 -97.308100
50% 49036.000000 39.152200 -87.976700
75% 73042.000000 41.894300 -80.142300
max 99950.000000 71.234600 171.237000

[160]: df_us_zip.dtypes

[160]: Zip Code int64
Place Name object
State object
State Abbreviation object
County object
Latitude float64
Longitude float64
dtype: object

[161]: df_us_zip.head()

[161]: Zip Code Place Name State State Abbreviation County \
0 501 Holtsville New York NY Suffolk
1 544 Holtsville New York NY Suffolk
2 1001 Agawam Massachusetts MA Hampden
3 1002 Amherst Massachusetts MA Hampshire
4 1003 Amherst Massachusetts MA Hampshire

Latitude Longitude
0 40.8154 -73.0451
1 40.8154 -73.0451
2 42.0702 -72.6227
3 42.3671 -72.4646
4 42.3919 -72.5248

[162]: df_us_state_coord = df_us_zip.get(["State␣
↪Abbreviation","Latitude","Longitude"]).groupby(["State Abbreviation"]).mean()

[163]: df_us_state_coord.shape

[163]: (57, 2)

[164]: df_us_state_coord.head()

[164]: Latitude Longitude
State Abbreviation

31

AA 33.036400 -82.249300
AK 61.456423 -152.486981
AL 32.886361 -86.813639
AP 32.349325 -112.935950
AR 35.124723 -92.402676

[165]: # How many entries have "Washington" as "Place Name"?
Let's count the unique values in the "Place Name" field
Series.value_counts(normalize=False, sort=True, ascending=False, bins=None,␣

↪dropna=True)
df_us_zip["Place Name"].value_counts().head()

[165]: Place Name
Washington 295
Houston 187
New York 146
El Paso 139
Dallas 114
Name: count, dtype: int64

[166]: # Cross-check
df_us_zip[df_us_zip['Place Name']=='Washington'].shape

[166]: (295, 7)

[167]: df_us_places = df_us_zip.get(["Place Name","State␣
↪Abbreviation","Latitude","Longitude"])

df_us_places = df_us_places.groupby(["Place Name","State Abbreviation"]).mean()
print(df_us_places.shape)
df_us_places

(29545, 2)

[167]: Latitude Longitude
Place Name State Abbreviation
APO AA 33.03640 -82.2493

AP 34.28285 -105.0628
Aaronsburg PA 40.89870 -77.4562
Abbeville AL 31.57550 -85.2790

GA 31.96480 -83.3068
… … …
Zuni NM 35.06840 -108.8336

VA 36.84370 -76.8110
Zurich MT 48.58440 -109.0304
Zwingle IA 42.27750 -90.7507
Zwolle LA 31.61380 -93.6636

[29545 rows x 2 columns]

32

[168]: df_us_places.reset_index(inplace=True)
print(df_us_places.shape)
print(df_us_places.columns)

(29545, 4)
Index(['Place Name', 'State Abbreviation', 'Latitude', 'Longitude'],
dtype='object')

[169]: df_us_places["Place Name"].value_counts().head()

[169]: Place Name
Franklin 27
Clinton 26
Madison 26
Washington 26
Springfield 24
Name: count, dtype: int64

[170]: # Cross-check
df_us_places[df_us_places['Place Name']=='Franklin'].shape

[170]: (27, 4)

[171]: # Mapping
Map values of Series using input correspondence (a dict, Series, or function).
Series.map(arg, na_action=None)
df_us_places["isSwiss"] = df_us_places["Place Name"].map(lambda x: any([s in x␣

↪for s in ["Zurich", "Berne", "Basel", "Lucerne", "Glarus", "Geneva"]]))
df_us_places[df_us_places["isSwiss"]]

[171]: Place Name State Abbreviation Latitude Longitude isSwiss
2096 Berne IN 40.6716 -84.9343 True
2097 Berne NY 42.6108 -74.1466 True
7523 East Berne NY 42.6191 -74.0555 True
9916 Geneva AL 31.0414 -85.8847 True
9917 Geneva FL 28.7503 -81.1114 True
9918 Geneva GA 32.5799 -84.5508 True
9919 Geneva IA 42.6755 -93.1294 True
9920 Geneva ID 42.3136 -111.0722 True
9921 Geneva IL 41.8860 -88.3110 True
9922 Geneva IN 40.6071 -84.9621 True
9923 Geneva MN 43.8235 -93.2671 True
9924 Geneva NE 40.5277 -97.6096 True
9925 Geneva NY 42.8637 -76.9913 True
9926 Geneva OH 41.8029 -80.9474 True
14181 Lake Geneva FL 29.7683 -81.9907 True
14182 Lake Geneva WI 42.5881 -88.4554 True
14253 Lake Zurich IL 42.2165 -88.0769 True

33

15522 Lucerne CA 39.0783 -122.7846 True
15523 Lucerne CO 40.4824 -104.7054 True
15524 Lucerne IN 40.8614 -86.4077 True
15525 Lucerne MO 40.4382 -93.2867 True
15526 Lucerne Valley CA 34.4470 -116.9189 True
15527 Lucernemines PA 40.5567 -79.1515 True
18544 New Geneva PA 39.7884 -79.9092 True
18547 New Glarus WI 42.8143 -89.6437 True
29542 Zurich MT 48.5844 -109.0304 True

3.0.8 Merging data

[172]: df1 = df_us_zip[:5].copy()
df2 = df_us_zip[5:10].copy()
print(df1.head())
print(df2.head())

Zip Code Place Name State State Abbreviation County \
0 501 Holtsville New York NY Suffolk
1 544 Holtsville New York NY Suffolk
2 1001 Agawam Massachusetts MA Hampden
3 1002 Amherst Massachusetts MA Hampshire
4 1003 Amherst Massachusetts MA Hampshire

Latitude Longitude
0 40.8154 -73.0451
1 40.8154 -73.0451
2 42.0702 -72.6227
3 42.3671 -72.4646
4 42.3919 -72.5248

Zip Code Place Name State State Abbreviation County \
5 1004 Amherst Massachusetts MA Hampshire
6 1005 Barre Massachusetts MA Worcester
7 1007 Belchertown Massachusetts MA Hampshire
8 1008 Blandford Massachusetts MA Hampden
9 1009 Bondsville Massachusetts MA Hampden

Latitude Longitude
5 42.3845 -72.5132
6 42.4097 -72.1084
7 42.2751 -72.4110
8 42.1829 -72.9361
9 42.2061 -72.3405

[173]: dfs = [df1,df2]

[174]: result = pd.concat(dfs)
print(result)

34

Zip Code Place Name State State Abbreviation County \
0 501 Holtsville New York NY Suffolk
1 544 Holtsville New York NY Suffolk
2 1001 Agawam Massachusetts MA Hampden
3 1002 Amherst Massachusetts MA Hampshire
4 1003 Amherst Massachusetts MA Hampshire
5 1004 Amherst Massachusetts MA Hampshire
6 1005 Barre Massachusetts MA Worcester
7 1007 Belchertown Massachusetts MA Hampshire
8 1008 Blandford Massachusetts MA Hampden
9 1009 Bondsville Massachusetts MA Hampden

Latitude Longitude
0 40.8154 -73.0451
1 40.8154 -73.0451
2 42.0702 -72.6227
3 42.3671 -72.4646
4 42.3919 -72.5248
5 42.3845 -72.5132
6 42.4097 -72.1084
7 42.2751 -72.4110
8 42.1829 -72.9361
9 42.2061 -72.3405

[175]: df1 = df_us_zip[['Zip Code','Place Name','State']][:5].copy()
df2 = df_us_zip[['Zip Code','Latitude','Longitude']][3:8].copy()
dfs = [df1,df2]
print(df1)
print(df2)

Zip Code Place Name State
0 501 Holtsville New York
1 544 Holtsville New York
2 1001 Agawam Massachusetts
3 1002 Amherst Massachusetts
4 1003 Amherst Massachusetts

Zip Code Latitude Longitude
3 1002 42.3671 -72.4646
4 1003 42.3919 -72.5248
5 1004 42.3845 -72.5132
6 1005 42.4097 -72.1084
7 1007 42.2751 -72.4110

[176]: result = pd.concat(dfs,axis=1)
print(result)

Zip Code Place Name State Zip Code Latitude Longitude
0 501.0 Holtsville New York NaN NaN NaN
1 544.0 Holtsville New York NaN NaN NaN

35

2 1001.0 Agawam Massachusetts NaN NaN NaN
3 1002.0 Amherst Massachusetts 1002.0 42.3671 -72.4646
4 1003.0 Amherst Massachusetts 1003.0 42.3919 -72.5248
5 NaN NaN NaN 1004.0 42.3845 -72.5132
6 NaN NaN NaN 1005.0 42.4097 -72.1084
7 NaN NaN NaN 1007.0 42.2751 -72.4110

[177]: result = pd.merge(df1,df2,how='inner',on='Zip Code')
print(result)

Zip Code Place Name State Latitude Longitude
0 1002 Amherst Massachusetts 42.3671 -72.4646
1 1003 Amherst Massachusetts 42.3919 -72.5248

[178]: result = pd.merge(df1,df2,how='left',on='Zip Code')
print(result)

Zip Code Place Name State Latitude Longitude
0 501 Holtsville New York NaN NaN
1 544 Holtsville New York NaN NaN
2 1001 Agawam Massachusetts NaN NaN
3 1002 Amherst Massachusetts 42.3671 -72.4646
4 1003 Amherst Massachusetts 42.3919 -72.5248

[179]: result = pd.merge(df1,df2,how='right',on='Zip Code')
print(result)

Zip Code Place Name State Latitude Longitude
0 1002 Amherst Massachusetts 42.3671 -72.4646
1 1003 Amherst Massachusetts 42.3919 -72.5248
2 1004 NaN NaN 42.3845 -72.5132
3 1005 NaN NaN 42.4097 -72.1084
4 1007 NaN NaN 42.2751 -72.4110

[180]: result = pd.merge(df1,df2,how='outer',on='Zip Code')
print(result)

Zip Code Place Name State Latitude Longitude
0 501 Holtsville New York NaN NaN
1 544 Holtsville New York NaN NaN
2 1001 Agawam Massachusetts NaN NaN
3 1002 Amherst Massachusetts 42.3671 -72.4646
4 1003 Amherst Massachusetts 42.3919 -72.5248
5 1004 NaN NaN 42.3845 -72.5132
6 1005 NaN NaN 42.4097 -72.1084
7 1007 NaN NaN 42.2751 -72.4110

36

3.1 Pickle, JSON and YAML files

[181]: import pickle
import json
import yaml

Let’s define a class Foo().

[182]: class Foo():
def __init__(self):

self.x = "bar"

[183]: # Create object of class Foo() and write to Pickle file
obj = Foo()
with open("example.pkl","wb") as f_o:

pickle.dump(obj,f_o)

[184]: # Show as string
pickle.dumps(obj)

[184]: b'\x80\x04\x95%\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\x94\x8c\x03Foo\x94\x
93\x94)\x81\x94}\x94\x8c\x01x\x94\x8c\x03bar\x94sb.'

[185]: # Read from Pickle file
with open("example.pkl","rb") as f_i:

new_obj = pickle.load(f_i)
print(new_obj.x)

bar

[186]: # Create a dictionary and write to JSON file
entry = {"1" : "Hello", "2" : "Bye", "3" : 4.35}
with open("example.json","w") as f_o:

json.dump(entry,f_o)

[187]: # Show as string
json.dumps(entry)

[187]: '{"1": "Hello", "2": "Bye", "3": 4.35}'

[188]: # Read from JSON file
with open("example.json","r") as f_i:

new_entry = json.load(f_i)
print(new_entry)

{'1': 'Hello', '2': 'Bye', '3': 4.35}

[189]: # Create a dictionary and write to YAML file
data = {

37

'first_data':[1,2,3,4,5],
'second_data':'Just a string.',
'third_data': dict(a=1.1,b=1.2,c=1.3),

}
with open('example.yaml','w') as f_o :

yaml.dump(data,f_o,default_flow_style=False)

[190]: # Read from YAML file
with open('example.yaml','r') as f_i:

new_data = yaml.load(f_i, Loader=yaml.SafeLoader)
print(new_data)
print(new_data['third_data']['a'])

{'first_data': [1, 2, 3, 4, 5], 'second_data': 'Just a string.', 'third_data':
{'a': 1.1, 'b': 1.2, 'c': 1.3}}
1.1

[191]: %%writefile example2.yaml
- &flag red
- green
- blue
- *flag

Overwriting example2.yaml

[192]: !head example2.yaml

- &flag red
- green
- blue
- *flag

[193]: with open('example2.yaml','r') as f_i:
data_example2 = yaml.load(f_i, Loader=yaml.SafeLoader)

print(data_example2)

['red', 'green', 'blue', 'red']

4 sqlite3

[194]: import sqlite3 as sql
!cp Solar_bkup.db Solar.db

[195]: conn = sql.connect("Solar.db")

[196]: results = conn.execute("SELECT * FROM solarsystem")

[197]: results.description

38

[197]: (('index', None, None, None, None, None, None),
('name', None, None, None, None, None, None),
('mass', None, None, None, None, None, None),
('x', None, None, None, None, None, None),
('y', None, None, None, None, None, None),
('z', None, None, None, None, None, None),
('vx', None, None, None, None, None, None),
('vy', None, None, None, None, None, None),
('vz', None, None, None, None, None, None))

[198]: for row in results:
print(row)

(0, 'Sun', 332946.0, 0.00213, -0.0016, -0.00011999999999999999, 5.01e-06,
4.08e-06, -1.24e-07)
(1, 'Mercury', 0.055273525999999996, 0.162, 0.264, 0.006940000000000001,
-0.0297, 0.0156, 0.004)
(2, 'Venus', 0.814997513, 0.302, 0.654, -0.008440000000000001, -0.0185,
0.008320000000000001, 0.00118)
(3, 'Earth', 1.0, 0.5660000000000001, -0.846, -9.120000000000001e-05, 0.014,
0.00949, -5.81e-07)
(4, 'Mars', 0.107446849, -0.434, -1.43, -0.0193, 0.0139, -0.00288,
-0.00040199999999999996)
(5, 'Jupiter', 317.828133, -2.78, 4.47, 0.0435, -0.0065, -0.0036200000000000004,
0.000161)
(6, 'Saturn', 95.1609041, -6.08, -7.84, 0.37799999999999995, 0.0041, -0.00343,
-0.00010400000000000001)
(7, 'Uranus', 14.5357566, 19.5, 4.68, -0.235, -0.0009480000000000001, 0.00364,
2.58e-05)
(8, 'Neptune', 17.147000000000002, 27.3, -12.3, -0.377, 0.0012699999999999999,
0.00288, -8.85e-05)
(9, 'Pluto', 0.002191, 6.91, -31.9, 1.42, 0.00314, 3.0799999999999996e-05,
-0.000918)
(10, 'Halley', 3.68e-11, -20.5, 25.1, -9.76, -7.709999999999999e-05,
0.0009539999999999999, -0.00017900000000000001)
(11, 'Moon', 0.0123031, 0.564, -0.8440000000000001, -0.000323, 0.0136,
0.009179999999999999, 8.97e-06)

[199]: conn.execute("DELETE FROM solarsystem WHERE name='Pluto'")
conn.commit()

[200]: results = conn.execute("SELECT * FROM solarsystem")
for row in results:

print(row)

(0, 'Sun', 332946.0, 0.00213, -0.0016, -0.00011999999999999999, 5.01e-06,
4.08e-06, -1.24e-07)
(1, 'Mercury', 0.055273525999999996, 0.162, 0.264, 0.006940000000000001,

39

-0.0297, 0.0156, 0.004)
(2, 'Venus', 0.814997513, 0.302, 0.654, -0.008440000000000001, -0.0185,
0.008320000000000001, 0.00118)
(3, 'Earth', 1.0, 0.5660000000000001, -0.846, -9.120000000000001e-05, 0.014,
0.00949, -5.81e-07)
(4, 'Mars', 0.107446849, -0.434, -1.43, -0.0193, 0.0139, -0.00288,
-0.00040199999999999996)
(5, 'Jupiter', 317.828133, -2.78, 4.47, 0.0435, -0.0065, -0.0036200000000000004,
0.000161)
(6, 'Saturn', 95.1609041, -6.08, -7.84, 0.37799999999999995, 0.0041, -0.00343,
-0.00010400000000000001)
(7, 'Uranus', 14.5357566, 19.5, 4.68, -0.235, -0.0009480000000000001, 0.00364,
2.58e-05)
(8, 'Neptune', 17.147000000000002, 27.3, -12.3, -0.377, 0.0012699999999999999,
0.00288, -8.85e-05)
(10, 'Halley', 3.68e-11, -20.5, 25.1, -9.76, -7.709999999999999e-05,
0.0009539999999999999, -0.00017900000000000001)
(11, 'Moon', 0.0123031, 0.564, -0.8440000000000001, -0.000323, 0.0136,
0.009179999999999999, 8.97e-06)

[201]: death_star = [12,'Death Star',0.1,0.564,-0.845,-9.12e-05,0.014,0.00949,-5.
↪81e-07]

conn.execute("INSERT INTO solarsystem VALUES (?,?,?,?,?,?,?,?,?)",death_star)

[201]: <sqlite3.Cursor at 0x7f86b0461440>

[202]: results = conn.execute("SELECT * FROM solarsystem")
for row in results:

print(row)

(0, 'Sun', 332946.0, 0.00213, -0.0016, -0.00011999999999999999, 5.01e-06,
4.08e-06, -1.24e-07)
(1, 'Mercury', 0.055273525999999996, 0.162, 0.264, 0.006940000000000001,
-0.0297, 0.0156, 0.004)
(2, 'Venus', 0.814997513, 0.302, 0.654, -0.008440000000000001, -0.0185,
0.008320000000000001, 0.00118)
(3, 'Earth', 1.0, 0.5660000000000001, -0.846, -9.120000000000001e-05, 0.014,
0.00949, -5.81e-07)
(4, 'Mars', 0.107446849, -0.434, -1.43, -0.0193, 0.0139, -0.00288,
-0.00040199999999999996)
(5, 'Jupiter', 317.828133, -2.78, 4.47, 0.0435, -0.0065, -0.0036200000000000004,
0.000161)
(6, 'Saturn', 95.1609041, -6.08, -7.84, 0.37799999999999995, 0.0041, -0.00343,
-0.00010400000000000001)
(7, 'Uranus', 14.5357566, 19.5, 4.68, -0.235, -0.0009480000000000001, 0.00364,
2.58e-05)
(8, 'Neptune', 17.147000000000002, 27.3, -12.3, -0.377, 0.0012699999999999999,
0.00288, -8.85e-05)

40

(10, 'Halley', 3.68e-11, -20.5, 25.1, -9.76, -7.709999999999999e-05,
0.0009539999999999999, -0.00017900000000000001)
(11, 'Moon', 0.0123031, 0.564, -0.8440000000000001, -0.000323, 0.0136,
0.009179999999999999, 8.97e-06)
(12, 'Death Star', 0.1, 0.564, -0.845, -9.12e-05, 0.014, 0.00949, -5.81e-07)

[203]: more_death_stars = list()
for i in range(10):

death_star[0] +=1
death_star[1] = "Death Star "+str(i)
more_death_stars.append(death_star.copy())

[204]: conn.executemany("INSERT INTO solarsystem VALUES (?,?,?,?,?,?,?,?,?
↪)",more_death_stars)

[204]: <sqlite3.Cursor at 0x7f86b0461940>

[205]: conn.commit()

[206]: def dict_factory(cursor, row):
d = {}
for idx,col in enumerate(cursor.description):

d[col[0]] = row[idx]
return d

conn.row_factory = dict_factory

[207]: max_mass = 1.0
results = conn.execute("SELECT name,mass FROM solarsystem WHERE mass<?

↪",[max_mass])
for row in results:

print(row)

{'name': 'Mercury', 'mass': 0.055273525999999996}
{'name': 'Venus', 'mass': 0.814997513}
{'name': 'Mars', 'mass': 0.107446849}
{'name': 'Halley', 'mass': 3.68e-11}
{'name': 'Moon', 'mass': 0.0123031}
{'name': 'Death Star', 'mass': 0.1}
{'name': 'Death Star 0', 'mass': 0.1}
{'name': 'Death Star 1', 'mass': 0.1}
{'name': 'Death Star 2', 'mass': 0.1}
{'name': 'Death Star 3', 'mass': 0.1}
{'name': 'Death Star 4', 'mass': 0.1}
{'name': 'Death Star 5', 'mass': 0.1}
{'name': 'Death Star 6', 'mass': 0.1}
{'name': 'Death Star 7', 'mass': 0.1}
{'name': 'Death Star 8', 'mass': 0.1}
{'name': 'Death Star 9', 'mass': 0.1}

41

[208]: results = conn.execute("SELECT AVG(mass) as mean_mass, COUNT(*) as n, mass>1.0␣
↪as larger_than_earth "+

"FROM solarsystem WHERE mass<>1.0 GROUP BY mass<1.0")
for row in results:

print(row)

{'mean_mass': 66678.13435874, 'n': 5, 'larger_than_earth': 1}
{'mean_mass': 0.1306263117523, 'n': 16, 'larger_than_earth': 0}

42

	Scientific Programming with Python:
	Data structures - NumPy, Pandas & beyond
	NumPy
	NumPy vs. standard Python, need for speed
	Details about NumPy
	Creating NumPy arrays
	NumPy arrays of random numbers
	Basic operations
	Data representation
	Data structure
	Shape manipulation
	Accessing array elements
	Get the data
	Broadcasting
	Simple indexing
	Fancy indexing

	Pandas
	Loading of data and basic manipulation
	Timeseries applications
	Basic visualisation
	Creating timeseries and filling missing values
	Hook up to data sources
	Spreadsheet operations
	And some further work with Dataframes
	Merging data

	Pickle, JSON and YAML files

	sqlite3

