Lecture

June 27, 2025

1 Scientific Programming with Python:

2 Data structures - NumPy, Pandas & beyond

Federica Lionetto (federica.lionetto@gmail.com)

The content of the lecture might be reused, also in parts, under the CC-licence by-sa 4.0

2.1 NumPy
2.1.1 NumPy vs. standard Python, need for speed

[1]: # Creating a standard Python list
L = list(range(1000))

[2]: # How long does it take to calculate the element-wise square?
Jtimeit [i**2 for i in L]

44.7 s = 1.72 s per loop (mean * std. dev. of 7 runs, 10,000 loops each)

[3]: # Now do the same with a NumPy array
import numpy as np
a = np.arange(1000)

[4]: %timeit a**2

937 ns + 24.9 ns per loop (mean + std. dev. of 7 runs, 1,000,000 loops each)

2.1.2 Details about NumPy

[5]: np.__version__
[6]: '2.2.4"
[6]: np.show_config()

Build Dependencies:
blas:
detection method: pkgconfig
found: true

include directory: /usr/include/x86_64-linux-gnu
1lib directory: /usr/lib/x86_64-linux-gnu
name: blas
openblas configuration: unknown
pc file directory: /usr/lib/x86_64-linux-gnu/pkgconfig
version: 3.12.1
lapack:
detection method: pkgconfig
found: true
include directory: /usr/include/x86_64-1linux-gnu
1lib directory: /usr/lib/x86_64-linux-gnu
name: lapack
openblas configuration: unknown
pc file directory: /usr/lib/x86_64-linux-gnu/pkgconfig
version: 3.12.1
Compilers:
c:
args: -g, -02, -Werror=implicit-function-declaration, -ffile-prefix-
map=$BUILDDIR=.,
-fstack-protector-strong, -fstack-clash-protection, -Wformat,
-Werror=format-security,
-fcf-protection, -Wdate-time, -D_FORTIFY_SOURCE=2
commands: cc
linker: 1d.bfd
linker args: -Wl,-z,relro, -g, -02, -Werror=implicit-function-declaration,
-ffile-prefix-map=$BUILDDIR=.,
-fstack-protector-strong, -fstack-clash-protection, -Wformat,
-Werror=format-security,
-fcf-protection, -Wdate-time, -D_FORTIFY_SOURCE=2
name: gcc
version: 14.2.0
Cc++:
args: -g, -02, -ffile-prefix-map=$BUILDDIR=., -fstack-protector-strong,
-fstack-clash-protection,
-Wformat, -Werror=format-security, -fcf-protection, -Wdate-time,
-D_FORTIFY_SOURCE=2
commands: c++
linker: 1d.bfd
linker args: -Wl,-z,relro, -g, -02, -ffile-prefix-map=$BUILDDIR=., -fstack-
protector-strong,
-fstack-clash-protection, -Wformat, -Werror=format-security, -fcf-
protection,
-Wdate-time, -D_FORTIFY_SOURCE=2
name: gcc
version: 14.2.0
cython:
commands: cython
linker: cython

[71:

name: cython
version: 3.0.11

Machine Information:
build:

cpu: x86_64

endian: little
family: x86_64
system: linux

host:

cpu: x86_64

endian: little
family: x86_64
system: linux

SIMD Extensions:
baseline:

SSE
SSE2
SSE3

found:

SSSE3
SSE41
POPCNT
SSE42
AVX
F1eC
FMA3
AVX2

not found:

AVX512F
AVX512CD

AVX512_KNL
AVX512_KNM
AVX512_SKX
AVX512_CLX
AVX512_CNL
AVX512_ICL
AVX512_SPR

BLAS: Basic Linear Algebra Subprograms
LAPACK: Linear Algebra Package

2.1.3 Creating NumPy arrays

a =

np.array([1,2,4])

print(a)

[1 2 4]

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK

[8]: b = np.arange(1,15,3)
print(b)

[1 4 7 10 13]

Note: You should not use np.arange to create arrays containing floating point numbers. arange
uses a == comparison for the last element. This can be affected by floating-point imprecisions.

[9]: ¢ = np.linspace(0,1,6)
print(c)

[0. 0.2 0.40.60.81. 1]

[10]: d = np.empty((1,3))
print(d)

[[3.37887e-319 0.00000e+000 0.00000e+000]]

[11]: e = np.zeros((2,5,3))
print(e)

LLLo.
(0.
(0.
(0.
(0.

o oooo
o oo oo
oo L L D

Lfo.
(0.
(0.
(0.
(0.

O O 0 oo
©O 0o o oo
P R

1]

[12]: f = np.ones((3,3))
print (£f)

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

[13]: g = np.eye(4)
print(g)

(I
(0.
(0.
(0.

o o r o
or oo
= O O O
ol L L

11

[14]: h = np.identity(4)
print (h)

[[1.
(0.
(0.
(0.

o o r o
or oo
= O O O
oL

11

[15]: i = np.diag(np.array([1,2,3,4]))
print (i)

[[1 00 0]
[0 2 0 0]
[0 0 3 0]
[0 0 0 4]]

[16]: 1 = np.diag(np.array([1,2,3,4]),k=-1)
print (1)

[[0 000 0]
[1 000 0]
[020 0 0]
[0 030 0]
000 4 0]1]

[17]: m = np.diag(np.array([1,2,3,4]),k=2)
print (m)

[[o
(o
[0
[0
[0
[0

0]
0]
0]
4]
0]
01]

O O O O O o
O O O O O+
O O O O N O
O O O w o o

[(18]: # arrays = [a,b,c,d,e,f,g,h,%,1,m]
for array in arrays :
print (array)
print (')

2.1.4 NumPy arrays of random numbers

[19]: = np.random.rand(4)

= np.random.rand(4,3)
np.random.randint(1,3,(2,3))
= np.random.randn(4,5)

= np.random.poisson(3,5)

O Q& 0 T W
]

arrays = [a,b,c,d,e]

for array in arrays :
print (array)
print('")

[20] :

[21]:

[22]:

[0.79675125 0.79834459 0.80720566 0.84975774]

[[0.39868422 0.75006983 0.46613861]
[0.63299908 0.72617476 0.73996072]
[0.77651208 0.15466578 0.38101609]
[0.30016638 0.79985435 0.48315564]]

[[2 1 2]
[1 1 21]

[0.75524 -0.36309407 -0.62805736 1.8463238 0.27922017]
[-1.38953922 -0.97571376 0.70919036 -2.82000355 -1.12213861]
[-1.05716836 1.66680457 2.3606188 -0.37471271 0.85836016]
[-0.45245693 0.06581539 -1.21390832 -1.21211947 -0.11421357]]

(47 46 8]

Random seed

np.random.seed (1)

arrl = np.random.rand(5)

print('Array with 5 elements, random seed 10:')
print(arrl)

Array with 5 elements, random seed 10:
[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01
1.46755891e-01]

arr2 = np.random.rand(10)
print('Array with 10 elements, random seed not set:')
print(arr2)

Array with 10 elements, random seed not set:
[0.09233859 0.18626021 0.34556073 0.39676747 0.53881673 0.41919451
0.6852195 0.20445225 0.87811744 0.02738759]

np.random.seed (1)

arr3 = np.random.rand(10)

print('Array with 10 elements, random seed 10:')
print(arr3)

Array with 10 elements, random seed 10:

[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01
1.46755891e-01 9.23385948e-02 1.86260211e-01 3.45560727e-01
3.96767474e-01 5.38816734e-01]

[23]:

[24]:

[24] :

[25]:

[25] :

[26] :

[26] :

[27]:

[27]:

[28]:

[28]:

[29]:

2.1.5 Basic operations

a = np.random.rand(3,4)
b = np.random.rand(3,4)
print(a)

print('')

print(b)

[[0.41919451 0.6852195 .20445225 0.87811744]
[0.02738759 0.67046751 0.4173048 .55868983]
[0.14038694 0.19810149 0.80074457 0.96826158]]

o

o
o

[[0.31342418 0.69232262 0.87638915 0.89460666]
[0.08504421 0.03905478 0.16983042 0.8781425]
[0.09834683 0.42110763 0.95788953 0.53316528]]

o

o
o

a+b

array([[0.73261869, 1.37754212, 1.0808414 , 1.7727241 1],
[0.1124318 , 0.70952229, 0.58713522, 1.43683233],
[0.23873377, 0.61920911, 1.7586341 , 1.50142686]11)

a-b

array([[0.10577034, -0.00710312, -0.6719369 , -0.01648923],
[-0.05765662, 0.63141273, 0.24747438, -0.31945267],
[0.0420401 , -0.22300614, -0.15714496, 0.43509629]1])

ax*xb

array([[0.1313857 , 0.47439296, 0.17917973, 0.78556971],
[0.00232916, 0.02618496, 0.07087105, 0.49060928],
[0.01380661, 0.08342205, 0.76702484, 0.51624346]1)

a/b

array([[1.33746706, 0.98974017, 0.23328934, 0.98156818],
[0.32203948, 17.16735966, 2.45718525, 0.63621773],
[1.4274678 , 0.47042959, 0.83594668, 1.81606268]])

Add 3.0 to every element
a+3.0

array([[3.41919451, 3.6852195 , 3.20445225, 3.87811744],
[3.02738759, 3.67046751, 3.4173048 , 3.55868983],
[3.14038694, 3.19810149, 3.80074457, 3.96826158]1])

Conditions
a>b

[29]: array([[True, False, False, False],
[False, True, True, False],
[True, False, False, Truell)

[30]: a.min()

[30]: np.float64(0.027387593197926163)

[31]: a.min(axis=0)

[31]: array([0.02738759, 0.19810149, 0.20445225, 0.55868983])
[32]: a.min(axis=1)

[32]: array([0.20445225, 0.02738759, 0.14038694])

[33]: | # Numpy has its own set of functions
np.exp(b)

[33]: array([[1.36810173, 1.99835155, 2.40221001, 2.44637335],
[1.0887652 , 1.03982745, 1.18510386, 2.40642563],
[1.1033454 , 1.52364825, 2.60619038, 1.70431843]11]1)

= N

[34]: | # Numpy has its own set of functions
np.cos(b)

[34]: array([[0.95128341, 0.7697655 , 0.63993001,
[0.99638592, 0.99923746, 0.98561344,
[0.99516785, 0.91263673, 0.57524759,

o

.62582565] ,
.63858169],
.8612025911)

o O

[35]: | # Functions in the math library are not able to handle multi-element data
import math
math.exp(b)

TypeError Traceback (most recent call last)

Cell In[35], line 3
1 # Functions in the math library are not able to handle multi-element da a
2 import math

----> 3 math.exp(b)

TypeError: only length-1 arrays can be converted to Python scalars

2.1.6 Data representation

[36]: a = np.array([1,0,-2],dtype=np.int64)

print(a)
[1 0 -2]
[37]: b = np.array(a,dtype=np.int8)
print (b)
[1 0 -2]
[38]: c = np.array(a,dtype=int) # the default python int
print(c)
[1 0 -2]

[39]: d = np.array(a,dtype=np.float64)
print(d)

[1. 0. -2.]

[40]: e = np.array(a,dtype=np.bool)
print(e)

[True False Truel

[41]: e.dtype
[41]: dtype('bool')

[42]: print('3 elements np.int64 correspond to', a.nbytes, 'bytes')
print('3 elements np.int8 correspond to', b.nbytes, 'bytes')
print('3 elements np.int correspond to', c.nbytes, 'bytes')
print('3 elements np.float64 correspond to', d.nbytes, 'bytes')
print('3 elements np.bool correspond to', e.nbytes, 'bytes')

elements np.int64 correspond to 24 bytes
elements np.int8 correspond to 3 bytes
elements np.int correspond to 24 bytes
elements np.float64 correspond to 24 bytes
elements np.bool correspond to 3 bytes

W wwww

[43]: |a
b

np.ones((3,4) ,dtype=np.int8)
np.ones ((3,4) ,dtype=np.int64)

[44]: print('np.int8 bytes:')
print([hex(el) for el in a.tobytes(order='A')])
print('')
print('np.int64 bytes:')
print([hex(el) for el in b.tobytes(order='A')])

np.int8 bytes:
['Ox1', 'Ox1', 'Ox1', 'Ox1', 'Ox1', 'Ox1', 'Ox1', 'Ox1', 'Ox1', 'Oxl', 'Oxl',
'0x1']

np.int64 bytes:

[rox1', 'Ox0', 'Ox0', 'Ox0', 'Ox0', 'Ox0', '0Ox0', 'Ox0', 'Ox1', '0x0', '0x0',
'0x0', 'Ox0', 'Ox0', 'Ox0', 'OxO0', 'Ox1', 'Ox0O0', '0x0', 'Ox0', 'Ox0', 'Ox0',
'0x0', 'Ox0', 'Ox1', 'Ox0', 'Ox0', 'OxO0', 'Ox0', '0x0', 'Ox0', 'Ox0', 'Ox1l',
'0x0', 'Ox0', 'Ox0', 'Ox0', 'OxO0', 'OxO0', 'OxO0', 'Ox1', 'Ox0', 'Ox0', 'Ox0',
'0x0', 'Ox0', 'Ox0', 'Ox0', 'Ox1', 'OxO0', 'Ox0', '0x0', '0x0', '0x0', '0x0',
'0x0', 'Ox1', 'Ox0', 'Ox0', 'OxO0', 'OxO0', 'OxO0', '0x0', 'Ox0', 'Ox1', 'Ox0',
'0x0', 'Ox0', 'Ox0', 'Ox0', 'Ox0', 'OxO0', 'Ox1', '0x0', 'O0x0', 'Ox0', '0Ox0',
'0x0', 'Ox0', 'Ox0', 'Ox1', 'Ox0', 'OxO0', 'Ox0O0', '0x0', 'Ox0', 'Ox0', 'Ox0',
'ox1', '0x0', '0x0', 'Ox0', '0x0', '0x0', 'Ox0', '0x0']

[45] : | 16%16-1
[45]: 255

[46]: # in numpy < 2.0, the following line silently overflows, leading to unezpected
wentries
in numpy >= 2.0, an OverflowError is raised
a = np.array([1,10,11,16,255,256] ,dtype=np.uint8)
print(a) # array([1, 10, 11, 16, 255, 0] in numpy < 2.0
b = np.array([1,10,11,16,255,256] ,dtype=np.int64)
print(b)

OverflowError Traceback (most recent call last)
Cell In[46], line 3

1 # in numpy < 2.0, the following line silently overflows, leading toy

wunexpected entries

2 # in numpy >= 2.0, an OverflowError is raised
----> 3 a = np.array([1,10,11,16,255,256] ,dtype=np.uint8)

4 print(a) # array([1, 10, 11, 16, 255, 0] in numpy < 2.0

5 b = np.array([1,10,11,16,255,256] ,dtype=np.int64)

OverflowError: Python integer 256 out of bounds for uint8

[47]: # even in numpy >= 2.0 you are not totaly safe though:
¢ = np.array([1,10,11,16,255] ,dtype=np.uint8)+1
print(c)

[2 11 12 17 0]

10

2.1.7 Data structure

[48]: a = np.ones((3,4),dtype=np.int8)
b = np.ones((3,4),dtype=np.int64)

[49]: print(a.ndim)
print(a.shape)
print(a.size)
print(a.itemsize)

2

(3, 4
12

1

[60]: print(b.ndim)
print (b.shape)
print(b.size)
print(b.itemsize)

2
3, 4
12
8

[61]: print(a.nbytes)
print (b.nbytes)

12
96

[52]: print(a.data)
<memory at 0x7f£86bb9a25a0>

[63]: print(a.data.tobytes())
print(a.tobytes())

b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01"
b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01"

[54]: print(a.flags)
print('"')
print(a.T.flags)

C_CONTIGUQOUS : True
F_CONTIGUQUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

11

[55]:

[56]:

[57]:

[58]:

C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

print(a.strides)
print(b.strides)
print(a.T.strides)

4, 1
(32, 8)
(1, 4

2.1.8 Shape manipulation

Let's define an array of wvalues distributed according to a Normal distribution
a = np.random.randn(3,4)
print(a)

[[-1.10061918 1.14472371 0.90159072 0.50249434]
[0.90085595 -0.68372786 -0.12289023 -0.93576943]
[-0.26788808 0.53035547 -0.69166075 -0.39675353]]

print(a.reshape(1,12))
print('')
print(a)

[[-1.10061918 1.14472371 0.90159072 0.50249434 0.90085595 -0.68372786
-0.12289023 -0.93576943 -0.26788808 0.53035547 -0.69166075 -0.39675353]]

[[-1.10061918 1.14472371 0.90159072 0.50249434]
[0.90085595 -0.68372786 -0.12289023 -0.93576943]
[-0.26788808 0.53035547 -0.69166075 -0.39675353]]

print(a.resize(1,12))
print('')
print(a)

None

[[-1.10061918 1.14472371 0.90159072 0.50249434 0.90085595 -0.68372786
-0.12289023 -0.93576943 -0.26788808 0.53035547 -0.69166075 -0.39675353]]

12

[69]: # Need to define a as in the beginning again
a = np.random.randn(3,4)
print(a)

[[-0.6871727 -0.84520564 -0.67124613 -0.0126646]
[-1.11731035 0.2344157 1.65980218 0.74204416]
[-0.19183555 -0.88762896 -0.74715829 1.6924546 1]

[60]: print(a.ravel())
print('")
print(a)

[-0.6871727 -0.84520564 -0.67124613 -0.0126646 -1.11731035 0.2344157
1.65980218 0.74204416 -0.19183555 -0.88762896 -0.74715829 1.6924546]

[[-0.6871727 -0.84520564 -0.67124613 -0.0126646]
[-1.11731035 0.2344157 1.65980218 0.74204416]
[-0.19183555 -0.88762896 -0.74715829 1.6924546]]

[61]: | print(a.T)

[[-0.6871727 -1.11731035 -0.19183555]
[-0.84520564 0.2344157 -0.88762896]
[-0.67124613 1.65980218 -0.74715829]
[-0.0126646 0.74204416 1.6924546]]

[62]: # Bad practices
b = np.random.randn(4)
print(b.shape)
print(b.T.shape)

[63]: # Good practices
¢ = np.random.randn(4,1)
print(c.shape)
print(c.T.shape)

4, 1
1, 4

2.1.9 Accessing array elements

[64]: a = np.ones((3,4),dtype=np.int64)
print(a)

[[1111]
111 1]
[1 11 1]]

13

[65]:

[66] :

[67]:

[68]:

[69]:

[70]:

[71]:

[72]:

[73]:

[74]:

b=a
a[0,0]=0
print (b)

[[011 1]
[1 11 1]
111 1]1]

c = a.copy(O
al1,1]=0
print(a)

[[0111]
[1 01 1]
[1111]1]

print(c)

[[011 1]
111 1]
[1 11 1]]

print(b)

[[0111]
[1 01 1]
111 1]1]

2.1.10 Get the data

Let's have a look
'head loadEx.txt

94.820 76.280 33.020
91.610 71.480 31.710
94.820 68.130 32.630
93.190 71.050 35.250
92.780 71.320 35.950
96.460 72.880 35.780
97.280 73.260 35.160
97.690 72.880 35.250
96.660 72.990 35.250
97.790 73.960 34.750

data = np.loadtxt('loadEx.txt',delimiter="

at

29.
29.
31.
31.
32.
32.
31.
31.
31.
32.

the

660
610
460
780
700
240
640
780
270
470

loadEz. tzt file

25.
25.
25.
27.
27.
26.
26.
26.
26.
26.

460
460
910
020
490
750
500
410
650
480

14

', comments="#")

[75]:

[76]:

[77]:
[77]:

[78]:

[79]:

[80]:

print(data)

[[94.82 76.28 33.02 29.66 25.46]
[91.61 71.48 31.71 29.61 25.46]
[94.82 68.13 32.63 31.46 25.91]

[160.51 196.19 166.71 132.29 113.32]
[160.05 195.71 165.84 131.83 113.11]
[160.44 193.83 164.32 129.98 112.18]]

print(data.shape)

(3773, 5)

datal0,1]
np.float64(76.28)

A more complexr example

dt = np.dtype([('name','S7"'),('mass',np.float32),
('position',[('x',np.float32),('y',np.float32),('z' ,np.float32)]),
('velocity',[('x',np.float32),('y',np.float32),('z',np.float32)])])

solarData = np.loadtxt('Solar.txt',dtype=dt)

print(solarData)

[(b'Sun', 3.3294600e+05, (2.13e-03, -1.60e-03, -1.20e-04), (5.01e-06,
4.08e-06, -1.24e-07))

(b'Mercury', 5.5273525e-02, (1.62e-01, 2.64e-01, 6.94e-03), (-2.97e-02,
1.56e-02, 4.00e-03))

(b'Venus', 8.1499749e-01, (3.02e-01, 6.54e-01, -8.44e-03), (-1.85e-02,
8.32e-03, 1.18e-03))

(b'Earth', 1.0000000e+00, (5.66e-01, -8.46e-01, -9.12e-05), (1.40e-02,
9.49e-03, -5.81e-07))

(b'Mars', 1.0744685e-01, (-4.34e-01, -1.43e+00, -1.93e-02), (1.39e-02,
-2.88e-03, -4.02e-04))

(b'Jupiter', 3.1782812e+02, (-2.78e+00, 4.47e+00, 4.35e-02), (-6.50e-03,
-3.62e-03, 1.61e-04))

(b'Saturn', 9.5160904e+01, (-6.08e+00, -7.84e+00, 3.78e-01), (4.10e-03,
-3.43e-03, -1.04e-04))

(b'Uranus', 1.4535757e+01, (1.95e+01, 4.68e+00, -2.35e-01), (-9.48e-04,
3.64e-03, 2.58e-05))

(b'Neptune', 1.7146999e+01, (2.73e+01, -1.23e+01, -3.77e-01), (1.27e-03,
2.88e-03, -8.85e-05))

(b'Pluto', 2.1909999e-03, (6.91e+00, -3.19e+01, 1.42e+00), (3.14e-03,
3.08e-05, -9.18e-04))

(b'Halley', 3.6800001e-11, (-2.05e+01, 2.51e+01, -9.76e+00), (-7.71le-05,
9.54e-04, -1.79e-04))

15

[81]:

[81]:

[82]:

[82]:

[83]:

[83]:

[84]:

[85]:

[86]:

(b'Moon', 1.2303100e-02, (5.64e-01, -8.44e-01, -3.23e-04), (1.36e-02,
9.18e-03, 8.97e-06))]

solarDatal['name']

array([b'Sun', b'Mercury', b'Venus', b'Earth', b'Mars', b'Jupiter',
b'Saturn', b'Uranus', b'Neptune', b'Pluto', b'Halley', b'Moon'],
dtype="'1[87")

solarData['position']['x"']

array([2.13e-03, 1.62e-01, 3.02e-01, 5.66e-01, -4.34e-01, -2.78e+00,
-6.08e+00, 1.95e+01, 2.73e+01, 6.91e+00, -2.05e+01, 5.64e-01],
dtype=float32)

solarData['position'] ['x'] [np.where(solarDatal['name']==b'Sun')]

array([0.00213], dtype=float32)

2.1.11 Broadcasting

a
b

np.random.rand(3,5)
np.random.rand(8)

c = al...,np.newaxis]*b
print(c.shape)

3, 5, 8

d = np.random.rand(1,10)
e = np.random.rand(10,1)
print(d.shape)

print(d)

print('')

print(e.shape)

print(e)

(1, 10)
[[0.57367949 0.00287033 0.61714491 0.3266449 0.5270581 0.8859421
0.35726976 0.90853515 0.62336012 0.01582124]]

(10, 1)
[[0.92943723]
[0.69089692]
[0.99732285]
[0.17234051]
[0.13713575]
[0.93259546]
[0.69681816]

16

[87]:

[88]:

[89]:

[89]:

[90]:

[91]:

[0.06600017]
[0.75546305]
[0.75387619]]

Ezplicit broadcasting.
= np.broadcast_arrays(d,e)

dd, ee
print(dd.shape)
print (ee.shape)

(10, 10)
(10, 10)
d[0,0]=-1.0
dd
array([[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
[-1.
0.8859421
ee

print(dd.strides)
print(ee.strides)

(0, 8)
(8, 0)

O O O O O O OO OO OO OO OoOoooo

.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,
.00287033,
.35726976,

O O O O O O OO O OO OO OO OO ooo

.61714491,
.90853515,
.61714491,
.908563515,
.61714491,
.90853515,
.61714491,
.90853515,
.61714491,
.90853515,
.61714491,
.90853515,
.61714491,
.90853515,
.61714491,
.90853515,
.61714491,
.90853515,
.61714491,
.90853515,

17

O O O O O O OO OO0 OO0 OoOO0O oo oo

.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,
.3266449 ,
.62336012,

O O O OO O OO OO0 OO OOO0O oo oo

5270581 ,

.01582124],
.5270581 ,
.01582124],
.5270581 ,
.01582124],
.5270581 ,
.01582124],
.5270581 ,
.01582124],
.5270581 ,
.01582124],
.5270581 ,
.01582124] ,
.5270581 ,
.01582124] ,
.5270581 ,
.01582124],
.5270581 ,
.0158212411)

2.1.12 Simple indexing

[92]: # Notice that this does not use additional memory!!!
a = np.arange(100) .reshape(10,10)

[93]: | # Access rows
al4:9]

[93]: array([[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
(70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89]])

[94]: | # Access columns
al[:,3:8]

[94]: array([[3, 4, 5, 6, 71,
[13, 14, 15, 16, 17],
[23, 24, 25, 26, 27],
[33, 34, 35, 36, 37],
[43, 44, 45, 46, 47],
[63, 54, 55, 56, 57],
(63, 64, 65, 66, 67],
(73, 74, 75, 76, 77],
[83, 84, 85, 86, 87],
[93, 94, 95, 96, 97]11)

[95]: # Negative indices
al:,-1]

[95]: array([9, 19, 29, 39, 49, 59, 69, 79, 89, 99])

[96]: # Ranges
al[-2::-3,1:6:2]

[96]: array([[81, 83, 85],
[51, 53, 55],
[21, 23, 25]11)

2.1.13 Fancy indexing

[97l: |al:,[1,3,1]]

[97]1: array([[1, 3, 1],
[11, 13, 11],
[21, 23, 21],
[31, 33, 31],

18

(41, 43, 41],
(51, 53, 511,
(61, 63, 611,
(1, 73, 711,
(81, 83, 81],
(91, 93, 9111)

[981: all1,3,111C[:,[1,3,1]1]

[98]: array([[11, 13, 11],
[31, 33, 31],
(11, 13, 111D)

(99]: |all1,3,11,[1,3,1]]
[99]: array([11, 33, 11])

[100]: | # Multidimensional arrays indezed by multidimensional arrays.
y = np.arange(35) .reshape(5,7)
print (y)

[fo 1 2 3 4 5 6]
[7 8 9 10 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]]

[101]: | # If the index arrays have a matching shape,
and there i1s an index array for each dimension of the array being indezed,
the resultant array has the same shape as the index arrays,
and the wvalues correspond to the index set for each position in the index,
“arrays.
[0,0], [2,1], and [4,2] elements of the indexed array.
y[np.array([0,2,4]), np.array([0,1,2])]

[101]: array([0, 15, 30])

[102]: | # If the index arrays do not have the same shape, a broadcasting is tried.
[0,1], [2,1], and [4,1] elements of the indezed array.
y[np.array([0,2,4]), 1]

[102]: array([1, 15, 29]1)

[103]: | # If we provide just one index array, the rows are selected but the columns arey
~kept as they were in the indexzed array.
y[np.array([0,2,4])]

19

[103]: array([[O, 1, 2, 3, 4, 5, 6],
[14, 15, 16, 17, 18, 19, 20],
[28, 29, 30, 31, 32, 33, 34]1)
[104]: # Fancy indezing.
i0 = np.random.randint(0,10,(8,1,8)) # Matriz of random integers between 0 and,
10 with shape (8,1,8).

il = np.random.randint(0,10,(2,8)) # Matriz of random integers between 0 and 10,
swith shape (2,8).

[105]: aliO,il] # creates a 8x2x8 array

[105]: array([[[80, 92, 28, 72, 51, 54, 40, 54],
[81, 97, 23, 71, 56, 56, 49, 56]],

([(80, 52, 88, 12, 11, 84, 70, 4],
[81, 57, 83, 11, 16, 86, 79, 611,

[([30, 42, 28, 2, 31, 54, 10, 24],
[31, 47, 23, 1, 36, 56, 19, 26]],

([40, 32, 8, 62, 1, 74, 20, 84],
[41, 37, 3, 61, 6, 76, 29, 86]],

[([30, 2, 88, 42, 21, 94, 0, 34],
[3t1, 7, 83, 41, 26, 96, 9, 36]],

([so, 12, 48, 32, 31, 64, 70, 34],
[81, 17, 43, 31, 36, 66, 79, 36]],

[[50, 32, 28, 42, 41, 4, 30, 34],
[61, 37, 23, 41, 46, 6, 39, 3611,

([80, 32, 68, 62, 71, 54, 10, 74],
[81, 37, 53, 61, 76, 56, 19, 76]111)

[106]: a[i0,i1] .shape
[106]: (8, 2, 8)
(107]: 1i0[0,0,0]
[107]: np.int64(8)
[108]: i1[0,0]

[108]: np.int64(0)

20

[109]: al8,0]
[109]: np.int64(80)
[110]: i0[1,0,0]
[110]: np.int64(8)
[111]: i1[0,0]
[111]: np.int64(0)
[112]: al7,7]

[112]: np.int64(77)

3 Pandas

[113]: import pandas as pd
[114]: 'head SMI.csv

Date,Open,High,Low,Close,Adj Close,Volume
1990-11-09,1378.900024,1389.0,1375.300049,1387.099976,1387.099976,0.0
1990-11-12,1388.099976,1408.099976,1388.099976,1407.5,1407.5,0.0
1990-11-13,1412.199951,1429.400024,1411.400024,1415.199951,1415.199951,0.0
1990-11-14,1413.599976,1413.599976,1402.099976,1410.300049,1410.300049,0.0
1990-11-15,1410.599976,1416.699951,1405.099976,1405.699951,1405.699951,0.0
1990-11-16,1405.699951,1407.400024,1389.400024,1395.199951,1395.199951,0.0
1990-11-19,1395.599976,1417.900024,1395.599976,1416.0,1416.0,0.0
1990-11-20,1414.800049,1415.0,1404.699951,1405.800049,1405.800049,0.0
1990-11-21,1405.599976,1405.599976,1396.699951,1398.400024,1398.400024,0.0

3.0.1 Loading of data and basic manipulation

[115]: # Series object
s = pd.Series([1,3,5,np.nan,6,8])

print(s)
print (type(s))
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0

dtype: float64
<class 'pandas.core.series.Series'>

21

[116]:

[117]:

[117]:

[118]:

[118]:

[119]:

[119]:

[120]:

[120]:

[121]:

[121]:

Dataframe object

ts = pd.read_csv('SMI.csv')

type(ts)

pandas.core.frame.DataFrame

ts.head ()

S W NN - O

S W N - O

Date
1990-11-09
1990-11-12
1990-11-13
1990-11-14
1990-11-15

Adj Close
1387.099976
1407.500000
1415.199951
1410.300049
1405.699951

ts.tail()

1378.900024
1388.099976
1412.199951
1413.599976
1410.599976

6738
6739
6740
6741
6742

6738
6739
6740
6741
6742

Date
2017-08-28
2017-08-29
2017-08-30
2017-08-31
2017-09-01

Adj Close
8864 .230469
8814.540039
8851.259766
8925.450195
8941.620117

ts.index

Open

Volume

0.0
0.0

0.0
0.0
0.0

Open
8864 .230469
8814 .540039
8851.259766
8925.450195
8941.620117

Volume
0.0

o O O O
o O O O

1389.000000
1408.099976
1429.400024
1413.599976
1416.699951

High

High
8864 .230469
8814.540039
8851.259766
8925.450195
8941.620117

RangeIndex(start=0, stop=6743, step=1)

ts.columns

Index(['Date’,

dtype='object')

'Open'’,

'High',

'Low',

22

1375.300049
1388.099976
1411.400024
1402.099976
1405.099976

'Close’,

Low

Low
8864.230469
8814.540039
8851.259766
8925.450195
8941.620117

'Adj Close',

Close \

1387.099976
1407 .500000
1415.199951
1410.300049
1405.699951

Close
8864 .230469
8814.540039
8851.259766
8925.450195
8941.620117

'"Volume'],

\

[122]: ts['Open'] [:10].values

[122]: array([1378.900024, 1388.099976, 1412.199951, 1413.599976, 1410.599976,
1405.699951, 1395.599976, 1414.800049, 1405.599976, 1400. i)

[123]: ts = ts.sort_values('Date')
ts.head ()

[123]: Date Open High Low Close \
1990-11-09 1378.900024 1389.000000 1375.300049 1387.099976
1990-11-12 1388.099976 1408.099976 1388.099976 1407.500000
1990-11-13 1412.199951 1429.400024 1411.400024 1415.199951
1990-11-14 1413.599976 1413.599976 1402.099976 1410.300049
1990-11-15 1410.599976 1416.699951 1405.099976 1405.699951

s W N - O

Adj Close Volume

0 1387.099976 0.0
1 1407.500000 0.0
2 1415.199951 0.0
3 1410.300049 0.0
4 1405.699951 0.0

[124]: # Find minimum and mazimum values in a given column
print(ts['Volume'] .min())
print(ts['Volume'] .max())

0.0
346767700.0

[125]: # Find indexz corresponding to mininum and mazimum values in a given column
Careful!!!
print(ts['Volume'] .idxmin())
print(ts['Volume'] .idxmax())

0
6079

[126]: # Access rows
ts[6079:6080]

[126]: Date Open High Low Close \
6079 2015-01-15 9259.200195 9277.200195 7932.200195 8400.599609

Adj Close Volume
6079 8400.599609 346767700.0

[127]: | # Modify index
ts.index = pd.to_datetime(ts.pop("Date"))

23

[128]:

[129]:

[129]:

[130]:

[130]:

[131]:

[131]:

ts =

ts.tail()

Date

2017-08-28
2017-08-29
2017-08-30
2017-08-31
2017-09-01

Date

2017-08-28
2017-08-29
2017-08-30
2017-08-31
2017-09-01

ts.sort_index()

Open

8864.230469
8814.540039
8851.259766
8925.450195
8941.620117

Volume

import datetime as dt
ts[ts.index>dt.datetime(2010,1,1)] .head()

Date

2010-01-04
2010-01-05
2010-01-06
2010-01-07
2010-01-08

Date

2010-01-04
2010-01-05
2010-01-06
2010-01-07
2010-01-08

Open

6578.500000
6620.700195
6598.200195
6536.500000
6574.700195

Volume

59150000.0
65848500.0
52305400.0
64539000.0
74761300.0

ts["Adj Close"].head()

Date

1990-11-09
1990-11-12
1990-11-13
1990-11-14
1990-11-15

1387.099976
1407.500000
1415.199951
1410.300049
1405.699951

High

8864.230469
8814.540039
8851.259766
8925.450195
8941.620117

High

6631.399902
6622.399902
6607 .799805
6574.200195
6635.799805

8864 .
8814.
8851.
8925.
8941.

6576.
6547 .
6550.
6494.
6574.

24

Low

230469
540039
259766
450195
620117

Low

000000
399902
100098
899902
000000

8864.
8814.
8851.
8925.
8941.

6631.
6579.
6559.
6555.
6617.

Close

230469
540039
259766
450195
620117

Close

399902
299805
399902
399902
899902

Adj Close

8864.230469
8814.540039
8851.259766
8925.450195
8941.620117

Adj Close

6631.399902
6579.299805
6559.399902
6555.399902
6617.899902

\

Name: Adj Close, dtype: float64
[132]: ts["Adj Close"].describe()

[132]: count 6743.000000

mean 5957.266658
std 2236.843089
min 1287.599976
25% 4561.000000
50% 6374.700195
75% 7790.649902
max 9531.500000

Name: Adj Close, dtype: float64

[133]: # Access parameters of describe
ts['Adj Close'].describe() ['count']

[133]: np.float64(6743.0)

3.0.2 Timeseries applications

[134]: # Resampling of time series
Creating a serties with 9 timestamps, each one corresponding to one minute
index = pd.date_range('1/6/2018', periods=9, freq='min')
series = pd.Series(range(9), index=index)
print(series)

2018-01-06 00:00:00
2018-01-06 00:01:00
2018-01-06 00:02:00
2018-01-06 00:03:00
2018-01-06 00:04:00
2018-01-06 00:05:00
2018-01-06 00:06:00
2018-01-06 00:07:00
2018-01-06 00:08:00
Freq: min, dtype: int64

00 ~NO Ol WN = O

[135]: # Downsample the series in bins of 3 minutes each and sum over the same bin
series.resample('3min') .sum()

[135]: 2018-01-06 00:00:00 3
2018-01-06 00:03:00 12
2018-01-06 00:06:00 21
Freq: 3min, dtype: int64

[136]: # Label the bin using the upper bound
series.resample('3min', label='right').sum()

25

[136]: 2018-01-06 00:03:00 3
2018-01-06 00:06:00 12
2018-01-06 00:09:00 21
Freq: 3min, dtype: int64

[137]: # DataFrame.resample(rule, aztis=0)
The object must have a datetime-like index
ts_monthly = ts["Adj Close"].resample("ME").
<apply(["median","mean","std","count","max","min"]) .head()

[138]: ts_monthly

[138]: median mean std count max \
Date
1990-11-30 1392.000000 1390.387497 20.156853 16 1416.000000
1990-12-31 1405.349976 1404.744446 21.675076 18 1450.300049
1991-01-31 1350.000000 1357.580956 44.510815 21 1438.599976
1991-02-28 1538.799988 1530.924988 50.931718 20 1603.199951
1991-03-31 1614.649964 1611.519995 24.735199 20 1650.599976
min
Date

1990-11-30 1353.699951
1990-12-31 1371.1999561
1991-01-31 1287.599976
1991-02-28 1448.099976
1991-03-31 1559.000000

3.0.3 Basic visualisation

[139]: day_return = ts["Adj Close"].pct_change() .dropna()
mean_30day = day_return.rolling(30) .mean()

import numpy as np
minmax_30day = day_return.rolling(30).apply(lambda x: (np.max(x)+np.min(x))*0.5)

mean_30day.resample("ME") .apply(["mean"]) .plot ()
minmax_30day.resample("ME") .apply(["mean"]) .plot ()

import matplotlib.pyplot as plt
plt.show()

26

0.006 7

0.004

0.002 ~

0.000

—0.002 ~

—0.004

—0.006

- mean

——
1994

——
1999

27

——
2004
Date

——
2009

——
2014

- MmMean

0.01 +

0.00 +

—0.01

—0.02

—— ——
2004 2009
Date

——
1999

3.0.4 Creating timeseries and filling missing values

[140]: dates = pd.date_range(ts.index.min(),ts.index.max(),freq="D")
print(dates)

DatetimeIndex(['1990-11-09', '1990-11-10', '1990-11-11', '1990-11-12',
'1990-11-13', '1990-11-14', '1990-11-15', '1990-11-16"',
'1990-11-17"', '1990-11-18"',

'2017-08-23', '2017-08-24', '2017-08-25', '2017-08-26',
'2017-08-27', '2017-08-28', '2017-08-29', '2017-08-30',
'2017-08-31"', '2017-09-01'],

dtype='datetime64[ns]', length=9794, freq='D')

[141]: ts_alldays = pd.Series(index=dates,data=ts["Adj Close"])
[142]: ts_alldays.head()
[142]: 1990-11-09 1387.099976

1990-11-10 NaN
1990-11-11 NaN

28

1990-11-12 1407 .500000
1990-11-13 1415.199951
Freq: D, Name: Adj Close, dtype: float64

[143]: ts_alldays.ffill(inplace=True)

ts_alldays.head ()

[143]: 1990-11-09 1387.099976
1990-11-10 1387.099976
1990-11-11 1387.099976
1990-11-12 1407.500000
1990-11-13 1415.199951

Freq: D, Name: Adj Close, dtype: float64

3.0.5 Hook up to data sources
http://pandas-datareader.readthedocs.io/en/latest/

[144]: # pd.__wversion__
[145]: # pip install pandas-datareader

[146]: version = [int(v) for v in pd.__version__.split('.')]
if (version[0] == 0 and version[1] >= 17) or (version[0] >= 1): # Test <f,
wversion 1s >= 0.17
from pandas_datareader import data, wb
else:
from pandas.io import data, wb

[147]: | # Retrieve information from FRED
import datetime
start = datetime.datetime(2010, 1, 1)
end = datetime.datetime (2018, 1, 1)
df = data.DataReader('F', 'google', start, end)
df = data.DataReader('GDP', 'fred', start, end)
print (df . shape)
print (df .head())
print(df.tail())

(33, 1)
GDP
DATE
2010-01-01 14764.610
2010-04-01 14980.193
2010-07-01 15141.607
2010-10-01 15309.474
2011-01-01 15351.448
GDP

29

[148]:

[149] :

[150] :

[151]:

[152] :

[153]:

[154]:

[155] :

[156] :
[157]:
[157]:
[158]:

[158]:

[159] :

DATE

2017-01-01 19280.084
2017-04-01 19438.643
2017-07-01 19692.595
2017-10-01 20037.088
2018-01-01 20328.553

Let's say we want to compare the Gross Domestic Products per capita ing
wconstant dollars in North America
wb.search('gdp.*capita.*const')

3.0.6 Spreadsheet operations

Let's use the download function to acquire the data from the World Bank’s,
wservers

gdp_data = wb.download(indicator="'NY.GDP.PCAP.
oKD', country=['CH', 'US', 'GB', 'DE'], start=2006, end=2016)
gdp_data.head (20)
gdp_data.shape
gdp_data.columns
gdp_data.unstack(level=0)
gdp_data.unstack(level=1)
gdp_data.groupby(level=0).mean ()
gdp_data.groupby(level=0).std()
3.0.7 And some further work with Dataframes
df_us_zip = pd.read_csv("us_postal_codes.csv")
df_us_zip.shape
(40933, 7)
df _us_zip.columns
Index(['Zip Code', 'Place Name', 'State', 'State Abbreviation', 'County',
'Latitude', 'Longitude'],
dtype="'object')

df _us_zip.describe()

30

[169]: Zip Code Latitude Longitude
count 40933.000000 40933.000000 40933.000000

mean 49819.569858 38.596225 -91.082332
std 27808.948650 5.255750 15.763730
min 501.000000 7.112800 -176.658100
25% 26451.000000 35.052600 -97.308100
50% 49036.000000 39.152200 -87.976700
75% 73042.000000 41.894300 -80.142300
max 99950.000000 71.234600 171.237000

[160]: df_us_zip.dtypes

[160]: Zip Code int64
Place Name object
State object
State Abbreviation object
County object
Latitude float64
Longitude float64

dtype: object

[161]: df_us_zip.head()

[161]: Zip Code Place Name State State Abbreviation County \
0 501 Holtsville New York NY Suffolk
1 544 Holtsville New York NY Suffolk
2 1001 Agawam Massachusetts MA Hampden
3 1002 Amherst Massachusetts MA Hampshire
4 1003 Amherst Massachusetts MA Hampshire

Latitude Longitude
40.8154 -73.0451
40.8154 -73.0451
42.0702 -72.6227
42.3671 -72.4646
42.3919 -72.5248

S W N —- O

[162] : df _us_state_coord = df_us_zip.get(["Statey
~Abbreviation","Latitude","Longitude"]) .groupby(["State Abbreviation"]) .mean()

[163]: df_us_state_coord.shape
[163]: (57, 2)
[164] : df us_state_coord.head()

[164] : Latitude Longitude
State Abbreviation

31

AA 33.036400 -82.249300

AK 61.456423 -152.486981
AL 32.886361 -86.813639
AP 32.349325 -112.935950
AR 35.124723 -92.402676

[165]: # How many entries have "Washington" as "Place Name"?
Let's count the unique values in the "Place Name" field
Series.value_counts(normalize=False, sort=True, ascending=False, bins=None,,
wdropna=True)

df _us_zip["Place Name"].value_counts() .head()

[165] : Place Name
Washington 295

Houston 187
New York 146
El Paso 139
Dallas 114

Name: count, dtype: int64

[166]: # Cross-check
df _us_zipl[df_us_zip['Place Name']=='Washington'].shape

[166]: (295, 7)

[167]: df_us_places = df_us_zip.get(["Place Name","State,
~Abbreviation","Latitude","Longitude"])
df_us_places = df_us_places.groupby(["Place Name","State Abbreviation"]) .mean()
print(df_us_places.shape)
df_us_places

(29545, 2)
[167]: Latitude Longitude
Place Name State Abbreviation
APO AA 33.03640 -82.2493
AP 34.28285 -105.0628
Aaronsburg PA 40.89870 -77.4562
Abbeville AL 31.57550 -85.2790
GA 31.96480 -83.3068
Zuni NM 35.06840 -108.8336
VA 36.84370 -76.8110
Zurich MT 48.58440 -109.0304
Zwingle IA 42.27750 -90.7507
Zwolle LA 31.61380 -93.6636

[29545 rows x 2 columns]

32

[168]: df_us_places.reset_index(inplace=True)
print (df_us_places.shape)
print(df_us_places.columns)

(29545, 4)
Index(['Place Name', 'State Abbreviation', 'Latitude', 'Longitude'],
dtype='object')

[169]: df_us_places["Place Name"].value_counts() .head()

[169] : Place Name

Franklin 27
Clinton 26
Madison 26
Washington 26

Springfield 24
Name: count, dtype: int64

[170]: | # Cross-check
df _us_places[df_us_places['Place Name']=='Franklin'].shape

[170]: (27, 4)

[171]: # Mapping
Map values of Serties using input correspondence (a dict, Series, or function).
Series.map (arg, ma_action=None)
df_us_places["isSwiss"] = df_us_places["Place Name"] .map(lambda x: any([s in x
ofor s in ["Zurich", "Berne", "Basel", "Lucerne", "Glarus", "Geneva"l]]l))
df _us_places[df_us_places["isSwiss"]]

[171]: Place Name State Abbreviation Latitude Longitude isSwiss
2096 Berne IN 40.6716 -84.9343 True
2097 Berne NY 42.6108 -74.1466 True
7523 East Berne NY 42.6191 -74.0555 True
9916 Geneva AL 31.0414 -85.8847 True
9917 Geneva FL 28.7503 -81.1114 True
9918 Geneva GA 32.5799 -84.5508 True
9919 Geneva IA 42.6755 -93.1294 True
9920 Geneva ID 42.3136 -111.0722 True
9921 Geneva IL 41.8860 -88.3110 True
9922 Geneva IN 40.6071 -84.9621 True
9923 Geneva MN 43.8235 -93.2671 True
9924 Geneva NE 40.5277 -97.6096 True
9925 Geneva NY 42.8637 -76.9913 True
9926 Geneva OH 41.8029 -80.9474 True
14181 Lake Geneva FL 29.7683 -81.9907 True
14182 Lake Geneva WI 42.5881 -88.4554 True
14253 Lake Zurich IL 42.2165 -88.0769 True

33

156622
155623
165624
155625
155626
165627
18544
18547
29542

Lucerne
Lucerne
Lucerne
Lucerne

Lucerne Valley
Lucernemines

New Geneva
New Glarus
Zurich

3.0.8 Merging data

CA
co
IN
MO
CA
PA
PA
WI
MT

[172]: dfl = df_us_zip[:5].copy()
df2 = df _us_zip[5:10].copy O
print(dfl.head())
print(df2.head())

Zip

> w NN -, O

Code
501
544

1001

1002

1003

Latitude

> w NN -, O

Zip

© 00N O O

40.
40.
42.
42.
42,

8154
8154
0702
3671
3919
Code
1004
1005
1007
1008
1009

Latitude

© 00 N O O

[173]: dfs =

42.
42.
42,
42.
42.

3845
4097
2751
1829
2061

[df1,

Place Name
Holtsville
Holtsville
Agawam
Amherst
Amherst

Longitude
-73.0451
-73.0451
-72.6227
-72.4646
-72.5248
Place Name

Amherst
Barre
Belchertown
Blandford
Bondsville

Longitude
-72.5132
-72.1084
-72.4110
-72.9361
-72.3405

df2]

[174] : result = pd.concat(dfs)
print(result)

39.
40.
40.
.4382

40

34.
40.
39.
42,
48.

0783
4824
8614

4470
5567
7884
8143
5844

-122

-104.
-86.
-93.
116.
-79.

-89.
-109.

State State Abbreviation

New York
New York
Massachusetts
Massachusetts
Massachusetts

NY
NY
MA
MA
MA

.7846 True
7054 True
4077 True
2867 True
9189 True
1515 True
.9092 True
6437 True
0304 True
County \
Suffolk
Suffolk
Hampden
Hampshire
Hampshire

State State Abbreviation County
Massachusetts MA Hampshire
Massachusetts MA Worcester
Massachusetts MA Hampshire
Massachusetts MA Hampden
Massachusetts MA Hampden

34

State State Abbreviation

Zip Code

NaN

NY
NY
MA
MA
MA
MA
MA
MA
MA
MA

Latitude
NaN

County
Suffolk
Suffolk
Hampden
Hampshire
Hampshire
Hampshire
Worcester
Hampshire

Hampden

Hampden

df _us_zipl[['Zip Code','Latitude', 'Longitude']][3:8].copy()

Longitude
NaN

Zip Code Place Name
0 501 Holtsville New York
1 544 Holtsville New York
2 1001 Agawam Massachusetts
3 1002 Amherst Massachusetts
4 1003 Amherst Massachusetts
5 1004 Amherst Massachusetts
6 1005 Barre Massachusetts
7 1007 Belchertown Massachusetts
8 1008 Blandford Massachusetts
9 1009 Bondsville Massachusetts
Latitude Longitude
0 40.8154 -73.0451
1 40.8154 -73.0451
2 42.0702 -72.6227
3 42.3671 -72.4646
4 42.3919 -72.5248
5 42.3845 -72.5132
6 42.4097 -72.1084
7 42.2751 -72.4110
8 42.1829 -72.9361
9 42.2061 -72.3405
[175]: df1 = df _us_zip[['Zip Code','Place Name','State']][:5].copy()
df2 =
dfs = [df1,df2]
print(df1)
print(df2)
Zip Code Place Name State
0 501 Holtsville New York
1 544 Holtsville New York
2 1001 Agawam Massachusetts
3 1002 Amherst Massachusetts
4 1003 Amherst Massachusetts
Zip Code Latitude Longitude
3 1002 42.3671 -72.4646
4 1003 42.3919 -72.5248
5 1004 42.3845 -72.5132
6 1005 42.4097 -72.1084
7 1007 42.2751 -72.4110
[176]: result = pd.concat(dfs,axis=1)
print(result)
Zip Code Place Name State
0 501.0 Holtsville New York
1 544 .0 Holtsville New York

35

NaN

NaN

NaN

[177]:

[178]:

[179] :

[180]:

2 1001.0 Agawam Massachusetts NaN NaN
3 1002.0 Amherst Massachusetts 1002.0 42.3671
4 1003.0 Amherst Massachusetts 1003.0 42.3919
5 NaN NaN NaN 1004.0 42.3845
6 NaN NaN NaN 1005.0 42.4097
7 NaN NaN NaN 1007.0 42.2751

result = pd.merge(dfl,df2,how="'inner',on="'Zip Code')
print (result)

Zip Code Place Name State Latitude Longitude
0 1002 Amherst Massachusetts 42.3671 -72.4646
1 1003 Amherst Massachusetts 42.3919 -72.5248

result = pd.merge(dfl,df2,how="'1left',on='Zip Code')
print (result)

Zip Code Place Name State Latitude Longitude
0 501 Holtsville New York NaN NaN
1 544 Holtsville New York NaN NaN
2 1001 Agawam Massachusetts NaN NaN
3 1002 Amherst Massachusetts 42.3671 -72.4646
4 1003 Amherst Massachusetts 42.3919 -72.5248

result = pd.merge(dfl,df2,how="'right',on="'Zip Code')
print(result)

Zip Code Place Name State Latitude Longitude
0 1002 Amherst Massachusetts 42.3671 -72.4646
1 1003 Amherst Massachusetts 42.3919 -72.5248
2 1004 NaN NaN 42.3845 -72.5132
3 1005 NaN NaN 42.4097 -72.1084
4 1007 NaN NaN 42.2751 -72.4110

result = pd.merge(dfl,df2,how="'outer',on="'Zip Code')
print(result)

Zip Code Place Name State Latitude Longitude
0 501 Holtsville New York NaN NaN
1 544 Holtsville New York NaN NaN
2 1001 Agawam Massachusetts NaN NaN
3 1002 Amherst Massachusetts 42.3671 -72.4646
4 1003 Amherst Massachusetts 42.3919 -72.5248
5 1004 NaN NaN 42.3845 -72.5132
6 1005 NaN NaN 42.4097 -72.1084
7 1007 NaN NaN 42.2751 -72.4110

36

NaN
-72.4646
-72.5248
-72.5132
-72.1084
-72.4110

3.1 Pickle, JSON and YAML files

[181]: | import pickle
import json
import yaml

Let’s define a class Foo().

[182]: class Foo():
def __init__(self):
self.x = "bar"

[183]: | # Create object of class Foo() and write to Pickle file
obj = Foo()
with open("example.pkl","wb") as f_o:
pickle.dump(obj,f_o)

[184]: | # Show as string
pickle.dumps(obj)

[184] : b'\x80\x04\x95%\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\x94\x8c\x03Foo\x94\x
93\x94) \x81\x94}\x94\x8c\x01x\x94\x8c\x03bar\x94sb. '

[185]: | # Read from Pickle file
with open("example.pkl","rb") as f_i:
new_obj = pickle.load(f_i)
print(new_obj.x)

bar

[186]: | # Create a dictionary and write to JSON file
entry = {"1" : "Hello", "2" : "Bye", "3" : 4.35}
with open("example.json","w") as f_o:
json.dump(entry,f_o)

[187]: | # Show as string
json.dumps (entry)

[187] I{lllll: "Hello", non. "Bye", ngn. 435}|

[188]: | # Read from JSON file
with open("example.json","r") as f_i:
new_entry = json.load(f_i)
print (new_entry)

{'1': 'Hello', '2': 'Bye', '3': 4.35}

[189]: # Create a dictionary and write to YAML file
data = {

37

'first_data':[1,2,3,4,5],
'second_data':'Just a string.',
'third_data': dict(a=1.1,b=1.2,¢c=1.3),

}

with open('example.yaml','w') as f_o :
yaml.dump(data,f_o,default_flow_style=False)

[190]: # Read from YAML file
with open('example.yaml','r') as f_i:
new_data = yaml.load(f_i, Loader=yaml.SafeLoader)
print (new_data)
print(new_datal'third_data']l['a'])

{'first_data': [1, 2, 3, 4, 5], 'second_data': 'Just a string.', 'third_data':
{'a': 1.1, 'b': 1.2, 'c': 1.3}}
1.1

[191]: YJwritefile example2.yaml
- &flag red
- green
- blue
- xflag

Overwriting example2.yaml
[192]: 'head example2.yaml

- &flag red
- green

- blue

- xflag

[193]: with open('example2.yaml','r') as f_i:
data_example2 = yaml.load(f_i, Loader=yaml.SafeLoader)
print(data_example2)

['red', 'green', 'blue', 'red']
4 sqlite3

[194]: import sqlite3 as sql
!cp Solar_bkup.db Solar.db

[195]: conn = sql.connect("Solar.db")

[196] : results = conn.execute("SELECT * FROM solarsystem")

[197]: results.description

38

[197]:

[198]:

[199] :

[200] :

(('index', None, None, None, None, None, None),
('name', None, None, None, None, None, None),
('mass', None, None, None, None, None, None),
('x', None, None, None, None, None, None),
('y', None, None, None, None, None, None),
('z', None, None, None, None, None, None),
('vx', None, None, None, None, None, None),
('vy', None, None, None, None, None, None),
('vz', None, None, None, None, None, None))

for row in results:
print (row)

(0, 'Sun', 332946.0, 0.00213, -0.0016, -0.00011999999999999999, 5.01e-06,
4.08e-06, -1.24e-07)

(1, 'Mercury', 0.055273525999999996, 0.162, 0.264, 0.006940000000000001,
-0.0297, 0.0156, 0.004)

(2, 'Venus', 0.814997513, 0.302, 0.654, -0.008440000000000001, -0.0185,
0.008320000000000001, 0.00118)

(3, 'Earth', 1.0, 0.5660000000000001, -0.846, -9.120000000000001e-05, 0.014,
0.00949, -5.81e-07)

(4, 'Mars', 0.107446849, -0.434, -1.43, -0.0193, 0.0139, -0.00288,
-0.00040199999999999996)

(56, 'Jupiter', 317.828133, -2.78, 4.47, 0.0435, -0.0065, -0.0036200000000000004,
0.000161)

(6, 'Saturn', 95.1609041, -6.08, -7.84, 0.37799999999999995, 0.0041, -0.00343,
-0.00010400000000000001)

(7, 'Uranus', 14.5357566, 19.5, 4.68, -0.235, -0.0009480000000000001, 0.00364,
2.58e-05)

(8, 'Neptune', 17.147000000000002, 27.3, -12.3, -0.377, 0.0012699999999999999,
0.00288, -8.85e-05)

(9, 'Pluto', 0.002191, 6.91, -31.9, 1.42, 0.00314, 3.0799999999999996e-05,
-0.000918)

(10, 'Halley', 3.68e-11, -20.5, 25.1, -9.76, -7.709999999999999e-05,
0.0009539999999999999, -0.00017900000000000001)

(11, 'Moon', 0.0123031, 0.564, -0.8440000000000001, -0.000323, 0.0136,
0.009179999999999999, 8.97e-06)

conn.execute ("DELETE FROM solarsystem WHERE name='Pluto'")
conn.commit ()

results = conn.execute("SELECT * FROM solarsystem")
for row in results:
print (row)

(0, 'Sun', 332946.0, 0.00213, -0.0016, -0.00011999999999999999, 5.01e-06,
4.08e-06, -1.24e-07)
(1, 'Mercury', 0.055273525999999996, 0.162, 0.264, 0.006940000000000001,

39

-0.0297, 0.0156, 0.004)

(2, 'Venus', 0.814997513, 0.302, 0.654, -0.008440000000000001, -0.0185,
0.008320000000000001, 0.00118)

(3, 'Earth', 1.0, 0.5660000000000001, -0.846, -9.120000000000001e-05, 0.014,
0.00949, -5.81e-07)

(4, 'Mars', 0.107446849, -0.434, -1.43, -0.0193, 0.0139, -0.00288,
-0.00040199999999999996)

(56, 'Jupiter', 317.828133, -2.78, 4.47, 0.0435, -0.0065, -0.0036200000000000004,
0.000161)

(6, 'Saturn', 95.1609041, -6.08, -7.84, 0.37799999999999995, 0.0041, -0.00343,
-0.00010400000000000001)

(7, 'Uranus', 14.5357566, 19.5, 4.68, -0.235, -0.0009480000000000001, 0.00364,
2.58e-05)

(8, 'Neptune', 17.147000000000002, 27.3, -12.3, -0.377, 0.0012699999999999999,
0.00288, -8.85e-05)

(10, 'Halley', 3.68e-11, -20.5, 25.1, -9.76, -7.709999999999999e-05,
0.0009539999999999999, -0.00017900000000000001)

(11, 'Moon', 0.0123031, 0.564, -0.8440000000000001, -0.000323, 0.0136,
0.009179999999999999, 8.97e-06)

[201] : |death_star = [12, 'Death Star',0.1,0.564,-0.845,-9.12e-05,0.014,0.00949,-5.
~81e-07]
conn.execute ("INSERT INTO solarsystem VALUES (7,7,7,7,7,7,7,7,7)",death_star)

[201] : <sqlite3.Cursor at 0x7f86b0461440>

[202] : results = conn.execute("SELECT * FROM solarsystem")
for row in results:
print (row)

(0, 'Sun', 332946.0, 0.00213, -0.0016, -0.00011999999999999999, 5.01e-06,
4.08e-06, -1.24e-07)

(1, 'Mercury', 0.055273525999999996, 0.162, 0.264, 0.006940000000000001,
-0.0297, 0.0156, 0.004)

(2, 'Venus', 0.814997513, 0.302, 0.654, -0.008440000000000001, -0.0185,
0.008320000000000001, 0.00118)

(3, 'Earth', 1.0, 0.5660000000000001, -0.846, -9.120000000000001e-05, 0.014,
0.00949, -5.81e-07)

(4, 'Mars', 0.107446849, -0.434, -1.43, -0.0193, 0.0139, -0.00288,
-0.00040199999999999996)

(5, 'Jupiter', 317.828133, -2.78, 4.47, 0.0435, -0.0065, -0.0036200000000000004,
0.000161)

(6, 'Saturn', 95.1609041, -6.08, -7.84, 0.37799999999999995, 0.0041, -0.00343,
-0.00010400000000000001)

(7, 'Uranus', 14.5357566, 19.5, 4.68, -0.235, -0.0009480000000000001, 0.00364,
2.58e-05)

(8, 'Neptune', 17.147000000000002, 27.3, -12.3, -0.377, 0.0012699999999999999,
0.00288, -8.85e-05)

40

(10, 'Halley', 3.68e-11, -20.5, 25.1, -9.76, -7.709999999999999e-05,
0.0009539999999999999, -0.00017900000000000001)

(11, 'Moon', 0.0123031, 0.564, -0.8440000000000001, -0.000323, 0.0136,
0.009179999999999999, 8.97e-06)

(12, 'Death Star', 0.1, 0.564, -0.845, -9.12e-05, 0.014, 0.00949, -5.81e-07)

[203] : more_death _stars = list()
for i in range(10):
death_star[0] +=1
death_star[1] = "Death Star "+str(i)
more_death_stars.append(death_star.copy())

[204]: conn.executemany("INSERT INTO solarsystem VALUES (?,7,7,7,7,7,7,7,7
<)",more_death_stars)

[204] : <sqlite3.Cursor at 0x7£86b0461940>
[205] : conn.commit ()

[206] : def dict_factory(cursor, row):
d = {}
for idx,col in enumerate(cursor.description):
d[col[0]] = rowl[idx]
return d
conn.row_factory = dict_factory

[207] : max mass = 1.0
results = conn.execute("SELECT name,mass FROM solarsystem WHERE mass<?
<", [max_mass])
for row in results:
print (row)

{'name': 'Mercury', 'mass': 0.055273525999999996}
{'name': 'Venus', 'mass': 0.814997513}

{'name': 'Mars', 'mass': 0.107446849}

{'name': 'Halley', 'mass': 3.68e-11}

{'name': 'Moon', 'mass': 0.0123031}

{'name': 'Death Star', 'mass': 0.1}

{'name': 'Death Star 0', 'mass': 0.1}
{'name': 'Death Star 1', 'mass': 0.1}
{'name': 'Death Star 2', 'mass': 0.1}
{'name': 'Death Star 3', 'mass': 0.1}
{'name': 'Death Star 4', 'mass': 0.1}
{'name': 'Death Star 5', 'mass': 0.1}
{'name': 'Death Star 6', 'mass': 0.1}
{'name': 'Death Star 7', 'mass': 0.1}
{'name': 'Death Star 8', 'mass': 0.1}
{'name': 'Death Star 9', 'mass': 0.1}

41

[208] : results = conn.execute("SELECT AVG(mass) as mean_mass, COUNT(*) as n, mass>1.0,
~as larger_than_earth "+
"FROM solarsystem WHERE mass<>1.0 GROUP BY mass<1.0")
for row in results:
print (row)

{'mean_mass': 66678.13435874, 'n': 5, 'larger_than_earth': 1}
{'mean_mass': 0.1306263117523, 'n': 16, 'larger_than_earth': 0}

42

	Scientific Programming with Python:
	Data structures - NumPy, Pandas & beyond
	NumPy
	NumPy vs. standard Python, need for speed
	Details about NumPy
	Creating NumPy arrays
	NumPy arrays of random numbers
	Basic operations
	Data representation
	Data structure
	Shape manipulation
	Accessing array elements
	Get the data
	Broadcasting
	Simple indexing
	Fancy indexing

	Pandas
	Loading of data and basic manipulation
	Timeseries applications
	Basic visualisation
	Creating timeseries and filling missing values
	Hook up to data sources
	Spreadsheet operations
	And some further work with Dataframes
	Merging data

	Pickle, JSON and YAML files

	sqlite3

