Nicola Chiapolini, 23 June 2025

Best Practices
Scientific Programming with Python

Nicola Chiapolini

University of Zurich
Faculty of Science

23 June 2025

Based on talk by Valentin Haenel https://github.com/esc/best-practices-talk
®0 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://github.com/esc/best-practices-talk
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Nicola Chiapolini, 23 June 2025 2/34

Introduction

Introduction
» We write code regularly
» We have not been formally trained

Best Practices

» evolved from experience

» increase productivity

» decrease stress

» still evolve with tools and languages

Development Methodologies

» e.g. Agile Programming or Test Driven Development
» lots of buzzwords
» still many helpful ideas

Nicola Chiapolini, 23 June 2025 3/34

Outline

Introduction

Style & Documentation
Special Statements
KIS(S) & DRY
Refactoring

Development Methodologies

Nicola Chiapolini, 23 June 2025 4/34

Outline

Style & Documentation

Nicola Chiapolini, 23 June 2025 5/34

Coding Style

» readability counts (often more than brevity or speed)
» give things intention revealing names

Example

def fun(n):
mnnn no COmmeTLt mnn
r =1
for i in n:
r = i
return r

https://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, 23 June 2025

5/34

Style & Documentation

Coding Style

» readability counts (often more than brevity or speed)

» give things intention revealing names
» For example: numbers instead of n

» For example: numbers instead of 1ist_of_float_numbers
> See also: Ottinger’s Rules for Naming

Example

def my_product (numbers) :
""" Compute the product of a sequence of numbers. """
total = 1
for item in numbers:
total *= item
return total

https://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, 23 June 2025 6/34

Formatting Code

» use coding conventions, e.g: PEP-8
» conventions specify

> layout

» white-space

» comments

» naming

> ..

» OR use a consistent style (especially when collaborating)

https://peps.python.org/pep-0008/

Formatting Code: Tools

Checker

» pylint (e.9. pylint my_product.py)

» pycodestyle (e.g. pycodestyle my_product.py)
» pydocstyle (e.g. pydocstyle my_product.py)
> flake8 (e.g. flake8 my_product.py)

Formatter
» autopep8 (e.g autopep8 --in-place my_product.py)
» yapf3 (e.g yapf3 --in-place my_product.py)
» black (e.g. black my_product.py)

https://pylint.pycqa.org/en/latest/
https://pypi.org/project/pycodestyle/
http://www.pydocstyle.org/en/latest/
https://pypi.org/project/flake8/
https://pypi.org/project/autopep8/
https://github.com/google/yapf
https://github.com/psf/black

8/34

Nicola Chiapolini, 23 June 2025
Style & Documentation

Finding Bugs with Pylint

Example

def current_rotation(beta, iota, phi, sigma):

""" calculate current rotation """
return np.cos(beta)*np.cos(phi)*np.cos(sigma)
+np.sin(beta) *np.cos (phi)*np.sin(sigma)*np.cos(iota)

-np.sin(beta)*np.sin(phi)*np.sin(iota)

8/34

Nicola Chiapolini, 23 June 2025
Style & Documentation

Finding Bugs with Pylint

Example

def current_rotation(beta, iota, phi, sigma):
""" calculate current rotation """
return np.cos(beta)*np.cos(phi)*np.cos(sigma)
+np.sin(beta) *np.cos (phi)*np.sin(sigma)*np.cos(iota)
-np.sin(beta)*np.sin(phi)*np.sin(iota)

[...]:7:4: WO101: Unreachable code (unreachable)
[...]:7:4: WO106: Expression "+np[...]" is assigned to nothing [...]
[...]:8:4: WO106: Expression "-np[...]" is assigned to nothing [...]

Nicola Chiapolini, 23 June 2025 9/34

Documenting Code: Docstrings

Example

def my_product (numbers) :

VYV VVvY

v

""" Compute the product of a sequence of numbers. """

at least a single line
also for yourself
is on-line help too

Document arguments and return objects, including types

For complex algorithms, document every line,
and include equations in docstring

Use docstring conventions: PEP257 and/or numpy

https://peps.python.org/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html

Nicola Chiapolini, 23 June 2025 34

Example Docstring

def my_product (numbers) :
" Compute the product of a sequence of numbers.

Parameters

numbers :@ sequence
list of numbers to multiply

Returns
product : number
the final product

Raises
TypeError

1f argument is mot a sequence or sequence contains
types that can't be multiplied

mwmn

Nicola Chiapolini, 23 June 2025 11/34

Style & Documentation

Documenting Your Project

» tools generate website
from docstrings

my_product_docstring module

> pydoc —
> sphinx v '
» Overview List

Raises: TypeError

» when project gets bigger

> how-to
> FAQ
> quick-start

https://docs.python.org/3/library/pydoc.html
https://www.sphinx-doc.org/en/master/
https://wiki.python.org/moin/DocumentationTools

Nicola Chiapolini, 23 June 2025 12/34

Outline

Special Statements

Nicola Chiapolini, 23 June 2025 13/34

Special Statements

import

» Don'’t use the star import. from module import *

» not obvious what you need

» modules may overwrite each other

» Where does this function come from?

» will import everything in a module

» ...unless you have a very good reason: e.g. pylab, interactive

» Put all imports at the beginning of the file. ..
» ...unless you have a very good reason

Example

import my_product as mp
mp.my_product ([1,2,3])

from my_product import my_product
my_product ([1,2,3])

Nicola Chiapolini, 23 June 2025

14/34

Special Statements

import: Pitfalls

Python evaluates the imported code at import time.

""" Bad Things happen here. """

def append_one(list_=[]):

""" Do not use mutable default values """
list_.append(1)
return list_

default_arg(bad=1 / 0):

""" Do mot trigger exceptions in keyword-arguments """
return bad

constants():

""" This can not be imported in Python < 3.6 """
return 9999999 ** 9999999

Nicola Chiapolini, 23 June 2025 15/34

Exceptions

» use try, except and raise
» often better then if (e.g. IndexError)

Example

try:
my_product (1, 2, 3)
except TypeError as e:
raise TypeError("'my_product' expects a sequence") from e

» don’t use special return values:
1, 0, False, None

» Fail early, fail often
» use built-in Exceptions

https://docs.python.org/3/library/exceptions.html

Nicola Chiapolini, 23 June 2025 16/34

Special Statements

assert

» Not intended for checks needed in production.

Example

def withdraw(balance,amount):
assert balance > amount, "Balance too small"
return balance - amount

print (withdraw(50, 100))

running: python3 withdraw.py

Traceback (most recent call last):
[...]

assert balance > amount, "Balance too small"

AssertionError: Balance too small

Nicola Chiapolini, 23 June 2025 16/34

Special Statements

assert

» Not intended for checks needed in production.

Example

def withdraw(balance,amount):
assert balance > amount, "Balance too small"
return balance - amount

print (withdraw(50, 100))

running: python3 -0 withdraw.py

Nicola Chiapolini, 23 June 2025 16/34

Special Statements

assert

» Not intended for checks needed in production.

Example

def withdraw(balance,amount):
assert balance > amount, "Balance too small"
return balance - amount

print (withdraw(50, 100))

running: python3 -0 withdraw.py
-50

i, 23 June 2025

Special Statements K

mypy: Type Hints and Static Checking
» ensures variables and functions are used correctly

Example

def factorial(nm):
res = 1
for i in range(l,n+1):
res *= i
return res

def concat(strl, str2):
return stril+str2

n=4.
res = factorial(n)
concat (f"{n}! = ", res)

Nicola Chiapolini, 23 June 2025

18/34

Special Statements

mypy: Execute with Python

python3d factorial.py

Traceback (most recent call last):
File ".../factorial_nohint.py", line 26, in <module>
res = factorial(n)

File ".../factorial_nohint.py", line 3, in factorial
for i in range(1,n+1):

TypeError: 'float' object cannot be interpreted as an integer

» n must be integer
» once fixed, we get the next error: str2 must be string

Nicola Chiapolini, 23 June 2025 19/34

Special Statements

mypy: Adding Type Hints

» can add type info to variables and function definitions

Example
def factorial(n: int) -> int:
res = 1
for i in range(l,n+1):
res *= i

return res

def concat(strl: str, str2: str) -> str:
return stril+str2

n=4.
res = factorial(n)
concat (f"{n}! = ", res)

Nicola Chiapolini, 23 June 2025 20/34

mypy: Check with mypy

python3 -m mypy factorial.py

factorial.py:15: error: Argument 1 to "factorial" has incompatible
type "float"; expected "int" [arg-typel

factorial.py:16: error: Argument 2 to "concat" has incompatible type
"int"; expected [arg-typel

Found 2 errors in 1 file (checked 1 source file)

str

» spots both problems
» must be run separately (ideally automatically)

Special Statements K

mypy: Summary

Cons

» additional work for programmer

» defining correct types can be tricky
(type hints cheat sheet)

» code gets more verbose and maybe confusing

Pros

» prevent a lot of possible bugs
» valuable even if not all code covered

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Nicola Chiapolini, 23 June 2025

KIS(S) & DRY

Outline

KIS(S) & DRY

Nicola Chiapolini, 23 June 2025

KIS(S) & DRY

Keep it Simple (Stupid) — KIS(S) Principle

Keep it Simple

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.
— Brian W. Kernighan

Nicola Chiapolini, 23 June 2025

KIS(S) & DRY

Don’t Repeat Yourself (DRY)

No copy & paste!

Not just lines code, but knowledge of all sorts

>
»
» Do not express the same piece of knowledge in two places. ..
» ...or you will have to update it everywhere

>

It is not a question of if this may fail, but when

Nicola Chiapolini, 23 June 2025

KIS(S) & DRY

Don’t Repeat Yourself (DRY): Types

Example

» Copy-and-paste a snippet, instead of refactoring it into a function
> Repeated implementation of utility methods

» because you don’t remember

> because you don’t know the libraries

numpy . prod([1,2,3])

» because developers don’t talk to each other

» Version number in source code, website, readme, package
filename

> |f you detect duplication: refactor!

Nicola Chiapolini, 23 June 2025 26/34

Outline

Refactoring

Nicola Chiapolini, 23 June 2025

Refactoring

Vv VvVVYVYyVvyy

re-organise your code without changing its functionality

rethink earlier design decisions
break large code blocks apart
rename and restructure code

will improve the readability and modularity
will usually reduce the lines of code

27/34

Refactoring

Nicola Chiapolini, 23 June 2025 28/34

Common Refactoring Operations

Rename class/method/module/package/function
Move class/method/module/package/function
Encapsulate code in method/function

Change method/function signature

Organise imports (remove unused and sort)

Always refactor one step at a time, and ensure code still works

» version control
» unit tests

Refactoring Example

def product_minus_sum(numbers):
- Subtract sum of numbers from product of numbers.
total = 0
for item in numbers:
total += item
total2 = 1
for item in numbers:
total2 *= item
return total - total2

mmnn

Nicola Chiapolini, 23 June 2025 29/34
Refactoring

Refactoring Example

from my_math import my_product, my_sum

def product_minus_sum(numbers) :
"t Subtract sum of nmumbers from product of numbers. """
sum_value = my_sum(numbers)
product_value = my_product (numbers)
return sum_value - product_value

» split into functions

Nicola Chiapolini, 23 June 2025 29/34

Refactoring Example

from numpy import prod, sum

def product_minus_sum(numbers) :
"t Subtract sum of nmumbers from product of numbers. """
sum_value = sum(numbers)
product_value = prod(numbers)
return sum_value - product_value

» split into functions
» use libraries/built-ins

Nicola Chiapolini, 23 June 2025 29/34

Refactoring Example

from numpy import prod, sum

def product_minus_sum(numbers) :
"t Subtract sum of nmumbers from product of numbers. """
sum_value = sum(numbers)
product_value = prod(numbers)
return product_value - sum_value

» split into functions
» use libraries/built-ins
» fix bug

Nicola Chiapolini, 23 June 2025 30/34

Outline

Development Methodologies

Nicola Chiapolini, 23 June 2025 31/34

Intre] tation ents Y R

Development Methodologies

What is a Development Methodology?

Consists of:

» process used for development
» tools to support this process

Help answer questions like:

» How far ahead should | plan?
» What should | prioritise?
» When do | write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, 23 June 2025 31/34

What is a Development Methodology?

Consists of:

» process used for development
» tools to support this process

Help answer questions like:

» How far ahead should | plan?
» What should | prioritise?
» When do | write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, 23 June 2025 32/34

The Waterfall Model, Royce 1970

B

» sequential
» from manufacturing and construction

Nicola Chiapolini, 23 June 2025 33/34

Development Methodologies

Agile Methods (late 90’s)

» minimal planning, small development iterations
» frequent input from environment
» very adaptive, since nothing is set in stone

Maintenance
y

Testing

Nicola Chiapolini, 23 June 2025 34/34

Development Methodologies

Test Driven Development (TDD)

Refactor
Optimise

» Define unit tests first!
» Develop one unit at a time!

» more tomorrow

Nicola Chiapolini, 23 June 2025 1/1

An Almost Unrelated Note: Using VirtualEnv

The Problem

» different tools need different versions of a module
» your Linux distribution does not include a module

The Solution: virtualenv

» initialise folder school_venv to store modules of this project

python -m venv --system-site-packages ~/school_venv

» update the search-paths to include folders in ~/venv

. venv/bin/activate
» run your code or install libraries with pip
» undo changes to search-paths

deactivate

	Introduction
	Style & Documentation
	Special Statements
	KIS(S) & DRY
	Refactoring
	Development Methodologies
	Appendix
	Virtualenv

