
Nicola Chiapolini & Christian Elsasser, July 13, 2024 1 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Useful Modules
Scientific Programming with Python

Nicola Chiapolini & Christian Elsasser

University of Zurich
Faculty of Science

July 13, 2024

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini & Christian Elsasser, July 13, 2024 2 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

General

Nicola Chiapolini & Christian Elsasser, July 13, 2024 3 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

difflib

▶ find differences between two sequences or strings
import difflib

start = ("bacon", "egg", "ham", "cheese")
end = ["bacon", "egg", "spam", "cheese"]
diff = difflib.ndiff(start, end)
for line in diff:

print(line)

bacon
egg

- ham
+ spam

cheese

▶ calculate how close two sequences or strings are
options=["hannah", "anna", "hanna", "andrea", "maria"]
close = difflib.get_close_matches("hana", options)
print(close)

options=[(1,2,3),(2,3,4),(3,4,5),(3,2,1)]
close = difflib.get_close_matches([2,3], options)
print(close)

['hanna', 'hannah', 'anna']
[(2, 3, 4), (1, 2, 3)]

Nicola Chiapolini & Christian Elsasser, July 13, 2024 4 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

glob

▶ find files on file system
import glob

matches = glob.glob("tree/*")
print("\n".join(matches))

print("")
matches = glob.glob("tree/**/*.py", recursive=True)
print("\n".join(matches))

tree/subdir
tree/fileA
tree/fileB.py

tree/fileB.py
tree/subdir/file1.py

▶ you might be interested in os.walk as well
import os

tree = os.walk("tree")
for entry in tree:

print(entry)

('tree', ['subdir'], ['fileA', 'fileB.py'])
('tree/subdir', [], ['file2', 'file1.py'])

Nicola Chiapolini & Christian Elsasser, July 13, 2024 5 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Data Types

Nicola Chiapolini & Christian Elsasser, July 13, 2024 6 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

datetime

▶ proper representation of dates and times
import datetime as dt

t1 = dt.datetime(2017,9,11,13,15)
print(t1)

2017-09-11 13:15:00

▶ reading and formatting of strings
t2 = dt.datetime.strptime("2017-09-11","%Y-%m-%d")
print(t2)

t3 = dt.datetime.now()
print(t3.strftime("%a, %d %B %Y %H:%M"))

2017-09-11 00:00:00
Sat, 13 July 2024 17:50

Nicola Chiapolini & Christian Elsasser, July 13, 2024 7 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

datetime (cont.)

▶ including timezones
tz_cest = dt.timezone(dt.timedelta(hours=+2))
t2 = dt.datetime(2017,9,11,13,15,tzinfo=tz_cest)
print(t2)

Hour in UTC
print("no tzinfo: ", t1.utctimetuple().tm_hour)
print("with tzinfo:", t2.utctimetuple().tm_hour)

2017-09-11 13:15:00+02:00
no tzinfo: 13
with tzinfo: 11

▶ proper representation of dates and times
import pytz

zurich = pytz.timezone('Europe/Zurich')
sydney = pytz.timezone('Australia/Sydney')

zurich_dt = zurich.localize(dt.datetime(2018, 3, 11, 19, 0))
print(zurich_dt)
sydney_dt = zurich_dt.astimezone(sydney)
print(sydney_dt)

print(zurich_dt==sydney_dt)

2018-03-11 19:00:00+01:00
2018-03-12 05:00:00+11:00
True

Nicola Chiapolini & Christian Elsasser, July 13, 2024 8 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

datetime (cont.)

▶ timedelta allows to do calculations
feb24 = dt.date(2024, 2, 28)
feb25 = dt.date(2025, 2, 28)
tdelta = dt.timedelta(days=1)
print(feb24+tdelta)
print(feb25+tdelta)

2024-02-29
2025-03-01

▶ a lot of useful functions: e.g. random date in interval
import random

start = dt.date(1990, 1,1,).toordinal()
end = dt.date(2000, 1,1,).toordinal()
rand = dt.date.fromordinal(random.randint(start, end))
print(rand)

1990-12-05

Nicola Chiapolini & Christian Elsasser, July 13, 2024 9 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

enum

▶ represent a set of possible values
from enum import StrEnum

class Compass(StrEnum):
n = "north"
ne = "northeast"
e = "east"
se = "southeast"
s = "south"
sw = "southwest"
w = "west"
nw = "northwest"

print(Compass.sw)
print(Compass("north") == Compass.e)
#print(Compass("osten")) # ValueError

southwest
False

Nicola Chiapolini & Christian Elsasser, July 13, 2024 10 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

dataclasses

▶ represent structured data
from dataclasses import dataclass
import datetime

@dataclass
class Article:

title: str
authors: list[str]
date: datetime.date
url: str

dna = Article(
"""Molecular Structure of Nucleic Acids:

A Structure for Deoxyribose Nucleic Acid""" ,
["Watson, J. D.", "Crick, F. H. C."],
datetime.date(1953, 4, 25),
"https://doi.org/10.1038/171737a0",

)
print(dna.title)

Molecular Structure of Nucleic Acids:
A Structure for Deoxyribose Nucleic Acid

Nicola Chiapolini & Christian Elsasser, July 13, 2024 11 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Functional Tools

Nicola Chiapolini & Christian Elsasser, July 13, 2024 12 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

itertools

▶ lots of tools to work with sequences
▶ chain sequences

from itertools import chain, cycle, permutations

res = [v for v in chain('ABC', 'DEF')]
print(res)

['A', 'B', 'C', 'D', 'E', 'F']

▶ infinitly cycle sequences
gen = cycle('ABC')
print([next(gen) for _ in range(5)])

['A', 'B', 'C', 'A', 'B']

▶ generate all permutations
res = ["".join(v) for v in permutations('ABC')]
print(res)

['ABC', 'ACB', 'BAC', 'BCA', 'CAB', 'CBA']

Nicola Chiapolini & Christian Elsasser, July 13, 2024 13 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Settings and User Input

Nicola Chiapolini & Christian Elsasser, July 13, 2024 14 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

argparse

▶ Parse commandline arguments to adjust programm execution easily
#!/usr/bin/env python3
import argparse

if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("integers", metavar="N", type=int, nargs="+",

help="an integer for the accumulator")
parser.add_argument("--sum", dest="accumulate", action="store_const",

const=sum, default=max,
help="sum the integers (default: find the max)")

args = parser.parse_args()

print(args.accumulate(args.integers))

$./argparsedemo.py 1 2 3 4
4

$./argparsedemo.py --sum 1 2 3 4
10

Nicola Chiapolini & Christian Elsasser, July 13, 2024 15 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

click

▶ Makes writing CLI (Command Line Interfaces) even easier.
#!/usr/bin/env python3
""" Process some integers. """
import click

@click.command()
@click.argument("integers", type=int, nargs=-1, required=True)
@click.option("--sum/--max", "-s/-m", "sum_", default=False, help="use sum or max (default: max)")
def process(sum_, integers):

accumulator = max
if sum_:

accumulator = sum
print(accumulator(integers))

if __name__ == "__main__":
pylint: disable=no-value-for-parameter
process()

$./clickdemo.py --sum 1 2 3 4
10

Nicola Chiapolini & Christian Elsasser, July 13, 2024 16 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

configparser

▶ Load configuration from files.
import configparser

conf = configparser.ConfigParser()
conf.read(["config.ini"])

accumulator = max
if conf["setup"].getboolean("sum", False):

accumulator = sum

integers = [
int(v) for v in (conf["values"]["ints"]).split(",")
]

print(accumulator(integers))

[setup]
sum = True

[values]
ints = 1,2,3

Nicola Chiapolini & Christian Elsasser, July 13, 2024 17 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

readline

▶ improve user experience for interactive input
import readline

while True:
name = input("Your Name: ")
print("Hello", name)

Demo

▶ uses GNU readline, only available on Linux and Mac
▶ only incomplete windows alternatives seem to exist

Nicola Chiapolini & Christian Elsasser, July 13, 2024 18 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Output

Nicola Chiapolini & Christian Elsasser, July 13, 2024 19 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

logging

▶ control output verbosity
import logging

logging.basicConfig(
format='%(levelname)s - %(name)s - %(message)s',
level=logging.WARNING # this is the default

)

recommended setup, works well with imports
logger = logging.getLogger(__name__)

logger.debug("This output is only for debugging")
logger.error("There was an error.")

ERROR - __main__ - There was an error.

Nicola Chiapolini & Christian Elsasser, July 13, 2024 20 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

logging (cont.)

▶ detailed control of output
log = logging.getLogger(__name__)
set lowest log-level, handlers can only
increase threshold/reduce verbosity
log.setLevel(logging.DEBUG)

add an output-channel for stderr
log.addHandler(logging.StreamHandler())
reduce ouput for last handler
log.handlers[-1].setLevel(logging.ERROR)

create and configure output to a file
(use "a" instead of "w" to append)
logfile = logging.FileHandler("demo.log", "w")
define format ouf Log-lines
- see `pydoc3 logging.Formatter` for variables
- extra variables (e.g. `%(var)s`) must be passed
via keyword argument `extra`
logfile.setFormatter(logging.Formatter(

"%(asctime)s -- %(levelname)s, %(var)s: %(message)s"
))

log.addHandler(logfile)

log.error("This is bad", extra={"var": 42})
log.info("Info: %s", "busy", extra={"var": 0})

console:
This is bad

logfile
2024-07-13 17:50:00,152 -- ERROR, 42: This is bad
2024-07-13 17:50:00,152 -- INFO, 0: Info: busy

Nicola Chiapolini & Christian Elsasser, July 13, 2024 21 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

textwrap

▶ wrapping and filling text
import textwrap

text = """This is an example
text that should be rewrapped
into longer lines, ignoring any
newlines in the original.
"""

res = textwrap.fill(text, width=30)
print(res)

print()

res = textwrap.indent(res, prefix=' # ')
print(res)

This is an example text that
should be rewrapped into
longer lines, ignoring any
newlines in the original.

This is an example text that
should be rewrapped into
longer lines, ignoring any
newlines in the original.

Nicola Chiapolini & Christian Elsasser, July 13, 2024 22 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

texttable

▶ output tables to terminal
from texttable import Texttable

output = Texttable(max_width=30)
output.set_cols_align(["l", "r", "r"])
output.add_row(["n", "2*n", "n**2"])
for n in range(5):

output.add_row([n, 2*n, n**2])
print(output.draw())

+---+-----+------+
| n | 2*n | n**2 |
+---+-----+------+
| 0 | 0 | 0 |
+---+-----+------+
| 1 | 2 | 1 |
+---+-----+------+
| 2 | 4 | 4 |
+---+-----+------+
| 3 | 6 | 9 |
+---+-----+------+
| 4 | 8 | 16 |
+---+-----+------+

Nicola Chiapolini & Christian Elsasser, July 13, 2024 23 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Interacting with the Web

Nicola Chiapolini & Christian Elsasser, July 13, 2024 24 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

requests

▶ interact with things reachable over the internet
▶ http get requests: e.g. fetching a website

import requests

url = "https://www.uzh.ch"
response = requests.get(url)
response.raise_for_status()

lines = response.text.split("\n")
lines = [l for l in lines if l.strip() != ""]
for line in lines[:5]:

print(line)

<!DOCTYPE html>
<html lang="de" data-template="ct01">
<head>

<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

▶ http post requests: e.g. filling a form
res = requests.post(

"https://httpbin.org/post",
data={"user": "me", "pass": "secrete"}
)

print("Status:", res.status_code)

Status: 200

Nicola Chiapolini & Christian Elsasser, July 13, 2024 25 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

bs4 / lxml

▶ extract elements from XML/HTML documents: e.g. links
from bs4 import BeautifulSoup

content = BeautifulSoup(response.text,"lxml")
links = content.find_all(name="a") # by tag name
#links = content.select("a.Link") # by css selector
for link in links[:5]:

print(link["href"])

https://www.uzh.ch
/cmsssl/de/search.html
https://www.students.uzh.ch
https://www.staff.uzh.ch
/cmsssl/de.html

▶ alternative option lxml
import lxml.html

content = lxml.html.fromstring(response.text)
links = content.findall(".//a") # by xpath
for link in links[:5]:

print(link.get("href"))

https://www.uzh.ch
/cmsssl/de/search.html
https://www.students.uzh.ch
https://www.staff.uzh.ch
/cmsssl/de.html

Nicola Chiapolini & Christian Elsasser, July 13, 2024 26 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

selenium

▶ remote control a real browser (for JavaScript and other dynamic content)
from selenium import webdriver
from selenium.webdriver.chrome.service import Service

driver = webdriver.Chrome(
service=Service("/usr/bin/chromedriver")
)

driver.get("https://www.uzh.ch")
driver.find_elements("tag name", "a")
driver.find_elements("tag name", "a")[-1].click()

Demo

Nicola Chiapolini & Christian Elsasser, July 13, 2024 27 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

Running External Commands

Nicola Chiapolini & Christian Elsasser, July 13, 2024 28 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

subprocess

▶ run external command
import subprocess

result = subprocess.run(["uname", "-om"])
print("res:", result)

x86_64 GNU/Linux
res: CompletedProcess(args=['uname', '-om'], returncode=0)

▶ capture output to access it from python
result = subprocess.run(

["uname", "-om"],
capture_output=True
)

print("---")
print(result.stdout.decode())
print("---")

x86_64 GNU/Linux

Nicola Chiapolini & Christian Elsasser, July 13, 2024 29 / 29

General Data Types Functional Tools Settings and User Input Output Interacting with the Web Running External Commands

subprocess (cont.)

▶ metacharacters are not interpreted unless shell=True
ext = "py"
res = subprocess.run(

[f"ls -1 *.{ext}"], # single element
shell=True # RISKY!

)

using:
ext = input("ext: ")
creates a shell injection vulnerability

capture.py
run.py
shell.py
stdin.py

Demo

▶ pass data to standard input with input=...
data = """# A title
And a simple paragraph
with some text.
"""
res = subprocess.run(["pandoc", "-t", "html"],

input=data.encode()
)

<h1 id="a-title">A title</h1>
<p>And a simple paragraph with some text.</p>

	General
	Data Types
	Functional Tools
	Settings and User Input
	Output
	Interacting with the Web
	Running External Commands

