[1]:

[2]:

[3]:

python tricks
July 13, 2024

1 Advanced Python Concepts

In this tutorial, a few advanced concepts are introduced. This includes

e Python sets

e packing and unpacking
e context manager

o decorator and factories
o Exceptions

1.1 Python sets

Python offers a lot of built-in functionality. Next to the most famous containers - tuples, lists,
dictionaries - there are also sets (and more).

Sets act like a mathematical set. They are unordered and cannot contain duplicates.

They can be created with the set () function or with the {} syntax (but using single entries without
colon - otherwise we would get a dictionary).

setl = {1, 2, 2, "a"}

list2 = [2, "a", "b", 4, 4]

set2 = set(list2)

print(f"setl: {setl}\nset2: {set2}\nlist2: {list2}")

setl: {1, 2, 'a'}
set2: {2, 4, 'b', 'a'}
list2: [2, 'a', 'b', 4, 4]

We see that only unique entries are stored in the set and that the order of the entries is not
preserved.

More elements can be added (inplace) to a set with the add() method.

setl.add(3)
print(f"setl: {setl}")

setl: {1, 2, 3, 'a'}

setl.remove(3)
print(f"setl: {set1}")

[4] :

[5]:

[5]:

[6]:

[6]:
[7]1:

[7]1:

[8]:

setl: {1, 2, 'a'}

multiple elements
setl.update([4, 5, 6])

setl

{1, 2, 4, 5, 6, 'a'}

1.1.1 Set operations

Sets can be used to perform mathematical set operations. The following operations are supported:
- union: returns the union of two sets (alternative syntax A | B) - intersection: returns the
intersection of two sets (alternative syntax A & B) - difference: returns the difference of two sets
(alternative syntax A - B) - symmetric_difference: returns the symmetric difference (xor) of two
sets (alternative syntax A ~ B)

All of this methods return a new set, so the original sets are not modified. They all have a _update
version, which modifies the original set inplace. (Exception: union_update is simply update as
seen above).

Furthermore, many tests can be performed on sets, such as: - element in set: checks if an
element is in the set (for example "a" in setl) - issubset: checks if a set is a subset of another
set (alternative syntax A <= B, for proper subset A < B) - issuperset: checks if a set is a superset
of another set (alternative syntax A >= B, for proper superset A > B) - isdisjoint: checks if two
sets have no common elements (alternative syntax A /= B) - isempty: checks if a set is empty -
and more...

print(setl)
print(set2)
setl.intersection(set2)

{1, 2, 4, 5, 6, 'a'}
{23 4: 'b', la'}

{2, 4, 'a'}
2 in setl
True

1.1.2 Immutable types only

As for dictionary keys, only immutable types can be used as keys in a dictionary (i.e. strings,
numbers, tuples, ...). Otherwise, a TypeError is raised.

set3 = {1list2, 5, 3} # Fails with a “TypeError’

TypeError Traceback (most recent call last)

Cell In[8], line 1
-—-=> 1 set3 = {1list2, 5, 3} # Fails with a “TypeError"

TypeError: unhashable type: 'list'

[9]: set4 = {set2, 5, 3} # Fails with a “TypeError’

TypeError Traceback (most recent call last)
Cell In[9], line 1
-——-> 1 setd4 = {set2, 5, 3} # Fails with a “TypeError"

TypeError: unhashable type: 'set'

[10]: set5 = {tuple(list2), (4, 3), 3}
print(f"set5: {set5}")

set6: {3, (2, 'a', 'b', 4, 4), (4, 3)}

[11]: (4, 3) in set5h

[11]: True

1.2 Packing and unpacking of values

[12]: # packing
tuple_ = 2,3,5,7
tuple_

[12]: (2, 3, 5, 7)

[13]: # unpacking
a, b, ¢, d = tuple_
print(c)

5

Using * we can group/ungroup list-like objects. They act as a “removal” of the parenthesis when
situated on the right and as an “adder” of parenthesis when situated on the left of the assigmenemt
operator (=).

Let’s play around...

[14]:|a, c, *b = [3, 4, 4.5, 5, 6]
[15]: b

[15]: [4.5, 5, 6]

[16]:

[17]:

[17]:

[18]:

[19]:

[20] :

[21]:

[22]:

[23]:

[24] :

As can be seen, b catches now all the remaining elements in a list. Interesting to see is also the
special case if no element is left.

dl, d2, *d3, d4 = [1, 2, 3] # nothing left for d3
d3

(]

This is simply an empty list. However, this has the advantage that we know that it is always a list.

Multiple unpackings can be added together (however, the other way around does not work: multiple
packings are not possible as it is ill-defined which variable would get how many elements).

a = [3, 4, 5]
d, e, £, g, h, i = *a, *b

Now we should be able to understand the *args and **kwargs for functions. *args works like
the examples above. **kwargs works very similar, but exists only in parameter-lists of functions.
There it packs/unpacks keyword-arguments into/from a dictionary. Let’s look at it:

def func(*xargs, **xkwargs):
print (f'args are {args}')
print (f"kwargs are {kwargsl}")

mykwargs = {'a': 5, 'b': 3}
myargs = [1, 3, 4]
func (*myargs, **mykwargs)

args are (1, 3, 4)
kwargs are {'a': 5, 'b': 3}

func(5, a=4)

args are (5,)
kwargs are {'a': 4}

def func(a, x, *+kwargs):
print(x, a, kwargs)

kwargs = {"x": 2}
kwargs['y'] = 3
func (1, *+xkwargs)
func(x=3, a=5)

21 {'y': 3}
35 {}

play around with 2t/

[25] :

1.2.1 Aside: do not confuse the different parameter/argument types
function definition

e required parameters: specified without a default value: def £ (p)
« optional parameters: have a default value: def f(p=42)

calling a function

e positional arguments: are given without a keyword £ (0)
e key-word arguments are passed using a keyword f (p=0)

Both requried and optional parameters can be passed as positional or key-word arguments!

(for the curious: there is a bit more that can be done)

1.3 Context manager

A context manager is an object that responds to a with statement. It may returns something. The
basic idea is that some action is performed when entering a context and again when exiting it.

with context as var:
do something

translates to

execute context entering code

var = result_from_context_entering_ code
do something

execute context leaving code

The great advantage here is that the “leaving code” is automatically executed whenever we step
out of the context!

This proved to be incredibly useful when operations have cleanup code that we need to execute yet
that is tedious to write manually and can be forgotten.

1.3.1 Using a class

We can have control over the enter and exit methods by creating a class and implementing the two
methods __enter__ and __exit__

class MyContext:

def __init__(self, x):
self.x = x
print('initialized')

def __enter__(self):
x = self.x
print('entered')
return x**2

def __exit__(self, type_, value, traceback): # but let's not go into,
~things in detail here
self.x = None
print('exited')

[26]: context_5 = MyContext(5)
initialized

[27]: with context_ 5 as value:
print("inside")
print (value)

print ("Outside")
print(value)
print("context_5.x:", context_5.x)

entered

inside

25

exited

Outside

25

context_b5.x: None

[28]: context_5 = MyContext(5)
xsquare = context_5.__enter__()
print("inside", xsquare)
#context 5. exit_ (...)

initialized
entered
inside 25

Where is this useful Basically with stateful objects. This includes anything that can be set
and changed (mutable objects).

[29]: with open('python_tricks.ipynb') as notebook:
print("".join(notebook.readlines() [:5]))

{
"cells": [

{

"cell_type": "markdown",
"metadata": {

The implementation roughly looks like this:

[30]: class MyOpen:

def __init__(self, f, mode):
self. file f
self. _mode mode

def __enter__(self):
return self._file.open(self._mode)

def __exit__(self, type_, value, traceback): # but let's not go into,
~things in detail here
self._file.close()

Exercise: create a context manager that temporarily sets a 'value' key to 42 of a dict and switches
it back to the old value on exit

[31]: | testdict = {'value': 11, 'name': 'the answer'}

to be invoked like this

with manager(testdict) as obj:
here the wvalue 1s 42
here the wvalue is 11

1.4 Generators
Generators are special functions that use yield.

What is yield?: It’s like a return, except that the execution stops at the yield, lets other code
execute and, at some point, continues again where the yield was. Examples are: - iterator: a
function that yields elements. Everytime it is called, it is supposed to yield an element and then
continue from there - asynchronous programing: it stops and waits until something else is finished
- in the context manager, as we will see

[32]: def squares(start=0, num=100):
i = start
while i < start+num:
yield ix**2
i+=1

[33]: gen = squares()
print (next(gen))
print (next(gen))

1

[34]: for v in squares(5,10):
print (v)

[35]:

[36]:

[37]:

[38]:

[38]:

[39]:

25
36
49
64
81
100
121
144
169
196

1.5 Function factories and Decorators

Sometimes we can’t write a function fully by hand but want to create it programatically. This
pattern is called a “factory”. To achieve this, instead of having a function that returns an integer
(an object), a list (an object), a dict (an object) or an array (an object), we return a function (an
object). We see that the concept of Python, “everything is an object”, starts being very useful
here.

goal: create a power function but let the power be specified by the code
exponent = 2

def power_2(z): # not 2, but "exponent”
return T ** exponent

def make_power_func(power) :
def func(x):
print ("Executed")
return x ** power

return func
pow3 = make_power_func(3)

pow3(2)

Executed

8

1.5.1 Pitfall lexical lookup

The name power inside the function func is remembered by the name (lexical) and NOT BY
REFERENCE. This means that the last object named power is the one that is used inside func.

def make_power_func(power) :
def func(x):
return x ** power

power = 42
return func
power = 1

[40]: pow3 = make_power_func(3)
[41]: pow3(2)
[41]: 4398046511104

Another example is to create a timing wrapper. Exercise: create a timing function that can be
used as follows

timed_pow3 = fime_func(pow3)
pow3(...)

HINT, scetch of solution

def time_func(func):
def new_func(...):
print('start')
func(...)
print('stop')
return new_func

[42]: import time

SOLUTION
def timed_func(func):
def wrapped_func(*args, **kwargs):

start = time.time()
res = func(*args, **kwargs)
end = time.time()
print(f'time needed: {end - start}')
return res

return wrapped_func

[43]: def add_notime(x, y):
return x + y

[44]: add_timed = timed_func(add_notime)
[45]: add_timed(y=4, x=5)

time needed: 9.5367431640625e-07

[45]: 9

[46]: add_timed(5, y=4)

[46] :

[47] :

[48] :

[49] :

time needed: 9.5367431640625e-07

9

1.5.2 Decorator

There is another way, just syntactical sugar, to make this automatic: a decorator. It is invoked as
below

O@timed_func
def add(x, y):
return x + y

Again, as for the contextmanager, we can also use a class here to give more flexibility and create a
decorator that takes arguments

1.6 ADVANCED ONLY: contect-manager, function decorators and yield all
together

One “easy” way to create a context manager is to have a function that has a yield and decorate
it with @contextlib.contextmanager

ADVANCED ONLY
import contextlib

Gcontextlib.contextmanager

def printer(x):
print(f'we just entered the context manager and will yield {x}')
yield x
print(f'Finishing the context manager, exiting')

with printer(5) as number:
print(f"we're inside, with number={number}")
print("left manager")

we just entered the context manager and will yield 5
we're inside, with number=5

Finishing the context manager, exiting

left manager

1.7 Exceptions

Exceptions are used to stop the execution at a certain point and surface to higher stacks in the
code, e.g. to go up in the call stack. A typical use-case is when an error is encountered, such as the
wrong type of object is given. Exceptions can also be caught in a try ... except ... block in
order to handle the exception.

There are a few built-in exceptions, the most common ones are: - TypeError: object has the wrong
type, e.g. string instead of float - ValueError: the value of the object is illegal, e.g. negative but
should be positive - RuntimeError: if a function is illegally executed or a status is wrong. E.g. if

10

[50]:

[51]:

[52]:

[63]:

an object first has to be loaded before it gets parsed. It covers any error that does not fall into an
other category. - KeyError, IndexError: if a key or index is not available, e.g. in a dict or list

An Exception can manually be raised by

raise TypeError("Has to be int, not str")

TypeError Traceback (most recent call last)
Cell In[50], line 1
----> 1 raise TypeError("Has to be int, not str")

TypeError: Has to be int, not str

Note that it is often convenient to create an instance such as in the example above where the
first argument is the message (as we see in the raised Exception above), but we can also raise an
exception by only using the class itself

raise TypeError

TypeError Traceback (most recent call last)
Cell In[51], line 1
----> 1 raise TypeError

TypeError:

1.7.1 Custom Exception

In Python, exceptions are simply a class. And as such, we can inherit from it and create our own
exception.

Attention: inherit from Exception or subclasses of it such as TypeError, ValueError, but
NEVER from BaseException.

class MyError (Exception):
pass

raise MyError("Hello world")

MyError Traceback (most recent call last)
Cell In[53], line 1
----> 1 raise MyError("Hello world")

MyError: Hello world

11

[54]:

[65]:

[56]:

[67]:

[58]:

An exception can also be created by inheriting from an already existing exception if it is more
specific and provides hints on the nature of the exception.

class NegativeValueError(ValueError):
pass

1.7.2 Catching exceptions

An exception can be caught in a try..except block. This works as follows: - if an exception is
raised in the try block, the next except is invoked - it is tested whether the raised exception is of
type subclass of the exception type specified to be caught. For example, except TypeError checks
if the raised error is of type TypeError or a subclass of it. - if that is not the case, it goes to the
next except statement (yes, there can be multiple) - ... more below

try:

raise NegativeValueError("Negative value encountered")
except ValueError as error:

print (f"Caught {errorl}")

Caught Negative value encountered

By using the as keyword, the error that is raised is assigned to a variable. We can inspect the error
now if we want or, as above, just print it.

If no error is specified, any error is caught (this should NOT be used, except for special cases)

try:
raise TypeError
Anti-pattern, do NOT use in general!
except: # any exception if not specified
pass

try:
raise TypeError("Type was wrong, unfortunately")

except TypeError as error: # any exception
print (f'caught TypeError: {error}')
except ValueError as error:
print (f'caugth ValueError: {error}')

caught TypeError: Type was wrong, unfortunately

To continue from above: after the last except, an else statement is looked for. The else is
executed if no exception was raised.

comment and uncomment
try:

12

[59]:

print ('no error ratsed')
raise TypeError("Type was wrong, unfortunately")
raise ValueError("Value was wrong, ")
except TypeError as error: # any exception
print (f'caught Type {errorl}')
except ValueError as error:
print (f'caugth Value: {errorl}')
else:
print("No error was caught")

print ("Executed after block")

caught Type Type was wrong, unfortunately
Executed after block

..and finally, after the else, a finally block is looked for. This is guaranteed to be executed!
Whether an exception is raised, whether it is caught or not, whether there is an else or not, the
finally is always executed.

Therefore it is suitable for any cleanup code such as closing files, removing temporary files and
more.

try:
pass
ratise TypeError("Type was wrong, unfortunately"”)
raise RuntimeError("Type was wrong, unfortunately")
except TypeError as error: # any exception
print (f'caught Type {error}')
except ValueError as error:
print (f'caugth Value: {errorl}')
else:
print("No error was caught")
finally: # POWERFUL! Guarantied to be ezxecuted
print('Finally run')
print ("Executed when passed")

Finally run

RuntimeError Traceback (most recent call last)
Cell In[59], line 4

1 try:

2 # pass

3 # raise TypeError("Type was wrong, unfortunately")
-———=> 4 raise RuntimeError("Type was wrong, unfortunately")

5 except TypeError as error: # any exception

6 print(f'caught Type {error}')

13

[60]:

[61]:

[62]:

RuntimeError: Type was wrong, unfortunately

Note that in the above example, the error was not caught! All the other statements could also be
omitted and only a try...finally block can be created.

Typical usecase: cleanup (temporary file removal)

try:
raise ValueError
finally:
print('raised')
raised

ValueError Traceback (most recent call last)
Cell In[60], line 2
1 try:
—— 2 raise ValueError
3 finally:
4 print('raised')
ValueError:

1.7.3 pitfall “guaranteed execution”

As the finally is guaranteed to be executed, this can have an odd effect: possible return statements
can be ignored before the finally IF the finally also has a return statement. The logic says here
that the finally return must be executed, as it is guaranteed to be executed.

def func(x):
try:
if x ==
raise RuntimeError('called inside func')
except RuntimeError as error:
return error
else:
print('else before 42')
return 42
print('after else 42')
finally:
print("cleaned up")
return 11

result = func(6)
print (f"Result: {result}")

14

else before 42
cleaned up
Result: 11

[63]: try:

raise ValueError

except ValueError as error:
print("raising")
raise RuntimeError from None

finally:
raise TypeError
print("finally")

print ("Unreachable")

raising

RuntimeError Traceback (most recent call last)
Cell In[63], line 5

4 print("raising")
-——>5 raise RuntimeError from None

6 finally:

RuntimeError:

During handling of the above exception, another exception occurred:

TypeError Traceback (most recent call last)
Cell In[63], line 7

5 raise RuntimeError from None

6 finally:
-——=>7 raise TypeError

8 print("finally")

9 print("Unreachable")

TypeError:

15

	Advanced Python Concepts
	Python sets
	Set operations
	Immutable types only

	Packing and unpacking of values
	Aside: do not confuse the different parameter/argument types

	Context manager
	Using a class

	Generators
	Function factories and Decorators
	Pitfall lexical lookup
	Decorator

	ADVANCED ONLY: contect-manager, function decorators and yield all together
	Exceptions
	Custom Exception
	Catching exceptions
	pitfall ``guaranteed execution''

