
Nicola Chiapolini, 9 July 2024 1 / 48

Introduction Test Debug Profile

Test, Debug, Profile
Scientific Programming with Python

Nicola Chiapolini

University of Zurich
Faculty of Science

9 July 2024

Based on a talk by Pietro Berkes
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Nicola Chiapolini, 9 July 2024 2 / 48

Introduction Test Debug Profile

Scientific Programming

Goal

▶ allow exploring many different approaches
▶ allow frequent changes and adjustments
▶ produce correct and reproducible results

Requirements

▶ bugs most be noticed
▶ code can be modify easily
▶ others can run code too
▶ scientist’s time is used optimally

Nicola Chiapolini, 9 July 2024 3 / 48

Introduction Test Debug Profile

Effect of Software Errors
!

Severity

Fr
eq

ue
nc

y

Nicola Chiapolini, 9 July 2024 4 / 48

Introduction Test Debug Profile

Effect of Software Errors: Retractions

Nicola Chiapolini, 9 July 2024 5 / 48

Introduction Test Debug Profile

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest
doctest
coverage

pdb timeit
cProfile
pstats

▶ standard python tools
▶ ipython magic commands
▶ mostly command line

Nicola Chiapolini, 9 July 2024 6 / 48

Introduction Test Debug Profile

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest
doctest
coverage

pdb timeit
cProfile
pstats

▶ standard python tools
▶ ipython magic commands
▶ mostly command line

Nicola Chiapolini, 9 July 2024 7 / 48

Introduction Test Debug Profile

Testing

Something you do anyway.

▶ run code and see if it crashes
▶ check if output makes sense
▶ run code with trivial input
▶ . . .

Nicola Chiapolini, 9 July 2024 8 / 48

Introduction Test Debug Profile

Formal Testing
▶ important part of modern software development
▶ unittest and integration tests
▶ tests written in parallel with code
▶ tests run frequently/automatically
▶ generate reports and statistics

[...]
replace predefined histogram ... ok
add a legend; change line color of last histogram to red ... ok
put title and axis labels ... ok

--
Ran 18 tests in 5.118s

OK
GoodBye!

Nicola Chiapolini, 9 July 2024 9 / 48

Introduction Test Debug Profile

Benefits

▶ only way to trust your code
▶ faster development

▶ know where your bugs are
▶ fixing bugs will not (re)introduce others
▶ change code with out worrying about consistency

▶ encourages better code
▶ provides example/documentation

FAIL: test_result (test_fibonacci.FiboTest)
test 7th fibonacci number
--
Traceback (most recent call last):

File "test_fibonacci.py", line 18, in test_result
self.assertEqual(result, expect)

AssertionError: 21 != 13

Nicola Chiapolini, 9 July 2024 10 / 48

Introduction Test Debug Profile

An Example

def remove(thelist, entry):
""" remove entry object from list """
for idx, item in enumerate(thelist):

if entry is item:
del thelist[idx]
break

else:
raise ValueError("Entry not in the list")

Assume we find this code in an old library of ours.

Nicola Chiapolini, 9 July 2024 10 / 48

Introduction Test Debug Profile

An Example

def remove(thelist, entry):
""" remove entry object from list """
thelist.remove(entry)

We prefer to keep it simple! Everything fine, right?

Nicola Chiapolini, 9 July 2024 10 / 48

Introduction Test Debug Profile

An Example

def remove(thelist, entry):
""" remove entry object from list """
thelist.remove(entry)

ERROR: test_remove_array (__main__.RemoveTest)
--
Traceback (most recent call last):

File "list_tests.py", line 19, in test_remove_array
lrm.remove(l, x)

File ".../examples/list_removal.py", line 3, in remove
thelist.remove(entry)

ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()

Nicola Chiapolini, 9 July 2024 11 / 48

Introduction Test Debug Profile

Start Testing

At the beginning, testing feels weird:

1. It’s obvious that this code works
2. The tests are longer than the code
3. The test code is a duplicate of the real code

→ it might take a while to get used to testing,
but it will pay off quiet rapidly.

Nicola Chiapolini, 9 July 2024 12 / 48

Introduction Test Debug Profile

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest
doctest
coverage

pdb timeit
cProfile
pstats

▶ standard python tools
▶ ipython magic commands
▶ mostly command line

Nicola Chiapolini, 9 July 2024 13 / 48

Introduction Test Debug Profile

unittest

▶ library for unittests
▶ part of standard python
▶ at the level of other modern tools

Alternatives

▶ pytest

https://docs.pytest.org/en/latest/

Nicola Chiapolini, 9 July 2024 14 / 48

Introduction Test Debug Profile

Anatomy of a TestCase

import unittest

class DemoTests(unittest.TestCase):

def test_boolean(self):
""" tests start with 'test' """
self.assertTrue(True)
self.assertFalse(False)

def test_add(self):
""" docstring can be printed """
self.assertEqual(2+1, 3)

if __name__ == "__main__":
""" execute all tests in module """
unittest.main()

Nicola Chiapolini, 9 July 2024 15 / 48

Introduction Test Debug Profile

Summary on Anatomy

Test Cases

▶ are subclass of unittest.TestCase
▶ group test units

Test Units

▶ methods, whose names start with test
▶ should cover one aspect
▶ check behaviour with "assertions"
▶ rise exception if assertion fails

Nicola Chiapolini, 9 July 2024 16 / 48

Introduction Test Debug Profile

Running Tests

Option 1 execute all test units in all test cases of this file
if __name__ == "__main__":

unittest.main(verbosity=1)
python test_module.py

Option 2 Execute all tests in one file
python -m unittest [-v] test_module

Option 3 Discover all tests in all submodules
python -m unittest discover [-v]

Nicola Chiapolini, 9 July 2024 17 / 48

Introduction Test Debug Profile

TestCase.assertSomething

▶ check boolean value
assertTrue('Hi'.islower()) # fail
assertFalse('Hi'.islower()) # pass

▶ check equality
assertEqual(2+1, 3) # pass
""" assertEqual can compare all sorts of objects """
assertEqual([2]+[1], [2, 1]) # pass

▶ check numbers are close
from math import sqrt, pi
assertAlmostEqual(sqrt(2), 1.414, places=3) # pass
""" values are rounded, not truncated """
assertAlmostEqual(pi, 3.141, 3) # fail
assertAlmostEqual(pi, 3.142, 3) # pass

Nicola Chiapolini, 9 July 2024 18 / 48

Introduction Test Debug Profile

TestCase.assertRaises

▶ most convenient with context managers
with self.assertRaises(ErrorType):

do_something()
do_some_more()

▶ Important: use most specific exception class
bad_file = "inexistent"
with self.assertRaises(FileNotFoundError): # raises NameError

open(bad_fil, 'r')

with self.assertRaises(Exception):
open(bad_fil, 'r') # pass

Nicola Chiapolini, 9 July 2024 19 / 48

Introduction Test Debug Profile

TestCase.assertMoreThings

assertGreater(a, b)
assertLess(a, b)

assertRegex(text, regexp)

assertIn(value, sequence)

assertIsNone(value)

assertIsInstance(my_object, class)

assertCountEqual(actual, expected)

complete list at
https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Nicola Chiapolini, 9 July 2024 20 / 48

Introduction Test Debug Profile

TestCase.assertNotSomething

Most of the assert methods have a Not version

assertEqual
assertNotEqual

assertAlmostEqual
assertNotAlmostEqual

assertIsNone
assertIsNotNone

Nicola Chiapolini, 9 July 2024 21 / 48

Introduction Test Debug Profile

Testing with numpy

numpy arrays have to be compared elementwise

class SpecialCases(unittest.TestCase):
def test_numpy(self):

a = numpy.array([1, 2])
b = numpy.array([1, 2])
self.assertEqual(a, b)

===
ERROR: test_numpy (__main__.SpecialCases)

Traceback (most recent call last):

[..]
ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()

Nicola Chiapolini, 9 July 2024 22 / 48

Introduction Test Debug Profile

numpy.testing

▶ defines appropriate function
numpy.testing.assert_array_equal(x, y)
numpy.testing.assert_array_almost_equal(x, y, decimal=6)

▶ use numpy functions for more complex tests
numpy.all(x) # True if all elements of x are true
numpy.any(x) # True if any of the elements of x is true
numpy.allclose(x, y) # True if element-wise close

Example

""" test that all elements of x are between 0 and 1 """
assertTrue(all(logical_and(x > 0.0, x < 1.0))

Nicola Chiapolini, 9 July 2024 23 / 48

Introduction Test Debug Profile

Strategies for Testing

▶ What does a good test look like?

▶ What should I test?

▶ What is special for scientific code?

Nicola Chiapolini, 9 July 2024 24 / 48

Introduction Test Debug Profile

What does a good test look like?

Given put system in right state
▶ create objects, initialise parameters, . . .
▶ define expected result

When action(s) of the test
▶ one or two lines of code

Then compare result with expectation
▶ set of assertions

Nicola Chiapolini, 9 July 2024 25 / 48

Introduction Test Debug Profile

What does a good test look like? – Example

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
string_ = 'HeLlO wOrld'
expected = 'hello world'

when
result = string_.lower()

then
self.assertEqual(result,expected)

Nicola Chiapolini, 9 July 2024 26 / 48

Introduction Test Debug Profile

What should I test?

▶ simple, general case
string_ = 'HeLlO wOrld'

▶ corner cases
string_ = ''
string_ = 'hello'
string_ = '1+2=3'

often involves design decisions

▶ any exception you raise explicitly

▶ any special behaviour you rely on

Nicola Chiapolini, 9 July 2024 27 / 48

Introduction Test Debug Profile

Reduce Overhead 1: Loops

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
Each test case is a tuple (input, expected)
test_cases = [('HeLlO wOrld', 'hello world'),

('hi', 'hi'),
('123 ([?', '123 ([?'),
('', '')]

for string_, expected in test_cases:
run several subtests
when
output = string_.lower()
then
self.assertEqual(output, expected)

Nicola Chiapolini, 9 July 2024 28 / 48

Introduction Test Debug Profile

Reduce Overhead 1: Subtests

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
Each test case is a tuple (input, expected)
test_cases = [('HeLlO wOrld', 'hello world'),

('hi', 'hi'),
('123 ([?', '123 ([?'),
('', '')]

for string_, expected in test_cases:
with self.subTest(config = string_):

when
output = string_.lower()
then
self.assertEqual(output, expected)

Nicola Chiapolini, 9 July 2024 29 / 48

Introduction Test Debug Profile

Reduce Overhead 2: Fixtures

▶ allow to use same setup/cleanup for several tests
▶ useful to

▶ create data set at runtime
▶ load data from file or database
▶ create mock objects

▶ available for test case as well as test unit

class FixureTestCase(unittest.TestCase):

@classmethod
def setUpClass(cls): # called at start of TestCase

def setUp(self): # called before each test

def tearDown(self): # called at end of each test

Nicola Chiapolini, 9 July 2024 30 / 48

Introduction Test Debug Profile

What is special for scientific code?
often deterministic test cases very limited/impossible

Numerical Fuzzing

▶ generate random input (print random seed)
▶ still need to know what to expect

Know What You Expect

▶ use inverse function
▶ generate data from model
▶ add noise to known solutions
▶ test general routine with specific ones
▶ test optimised algorithm with brute-force approach

Nicola Chiapolini, 9 July 2024 31 / 48

Introduction Test Debug Profile

Automated Fuzzying: Hypothesis (not in standard library)

hypothesis generates test inputs according to given properties.
import unittest, numpy
from hypothesis import given, strategies as st

class SumTestCase(unittest.TestCase):

@given(st.lists(st.integers(), min_size=2, max_size=2))
def test_sum(self, vals):

self.assertEqual(vals[0]+vals[1], numpy.sum(vals))

Why?

▶ cover large search-space (default 100 inputs)
▶ good for finding edge cases
▶ less manual work

https://hypothesis.works/

Nicola Chiapolini, 9 July 2024 32 / 48

Introduction Test Debug Profile

Test Driven Development (TDD)

Tests First

▶ choose next feature
▶ write test(s) for feature
▶ write simplest code

Benefits

▶ forced to think about design before coding
▶ code is decoupled and easier to maintain
▶ you will notice bugs

Nicola Chiapolini, 9 July 2024 33 / 48

Introduction Test Debug Profile

DEMO

Nicola Chiapolini, 9 July 2024 34 / 48

Introduction Test Debug Profile

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest
doctest
coverage

pdb timeit
cProfile
pstats

▶ standard python tools
▶ ipython magic commands
▶ mostly command line

Nicola Chiapolini, 9 July 2024 35 / 48

Introduction Test Debug Profile

doctest

▶ poor man’s unittest
▶ ensure docstrings are up-to-date

def add(a,b):
""" add two numbers

Example

>>> add(40,2)
42

"""
return a+b

python -m doctest [-v] my_doctest.py

Trying:
add(40,2)

Expecting:
42

ok
1 items had no tests:

my_doctest
1 items passed all tests:

1 tests in my_doctest.add
1 tests in 2 items.
1 passed and 0 failed.
Test passed.

Nicola Chiapolini, 9 July 2024 36 / 48

Introduction Test Debug Profile

Code Coverage

▶ it’s easy to leave part untested
▶ features activated by keyword
▶ code to handle exception

▶ coverage tools track the lines executed

coverage.py

▶ python script

▶ produces text and HTML reports
python -m coverage run test_file.py
python -m coverage report [-m] [--omit="/usr*"]

▶ not in standard library
get from https://coverage.readthedocs.io/en/latest/

https://coverage.readthedocs.io/en/latest/

Nicola Chiapolini, 9 July 2024 37 / 48

Introduction Test Debug Profile

DEMO

Nicola Chiapolini, 9 July 2024 38 / 48

Introduction Test Debug Profile

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest
doctest
coverage

pdb timeit
cProfile
pstats

▶ standard python tools
▶ ipython magic commands
▶ mostly command line

Nicola Chiapolini, 9 July 2024 39 / 48

Introduction Test Debug Profile

Debugging

▶ use tests to avoid bugs and limit „search space”
▶ avoid print statements
▶ use debugger

pdb – the Python debugger

▶ command line based (but integrated in most IDEs)

▶ opens an interactive shell
▶ allows to

▶ stop execution anywhere in your code
▶ execute code step by step
▶ examine and change variables
▶ examine call stack

Nicola Chiapolini, 9 July 2024 40 / 48

Introduction Test Debug Profile

Entering pdb

▶ enter at start of file
python -m pdb myscript.py

▶ enter at statement/function
import pdb
your code here
pdb.run(expression_string)

▶ enter at point in code
some code here
the debugger starts here
import pdb; pdb.set_trace()
rest of the code

▶ from ipython
%pdb # enter pdb on exception
%debug # enter pdb after exception

Nicola Chiapolini, 9 July 2024 41 / 48

Introduction Test Debug Profile

DEMO

Nicola Chiapolini, 9 July 2024 42 / 48

Introduction Test Debug Profile

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest
doctest
coverage

pdb timeit
cProfile
pstats

▶ standard python tools
▶ ipython magic commands
▶ mostly command line

Nicola Chiapolini, 9 July 2024 43 / 48

Introduction Test Debug Profile

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code

3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, 9 July 2024 43 / 48

Introduction Test Debug Profile

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code

3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, 9 July 2024 44 / 48

Introduction Test Debug Profile

timeit

▶ precise timing for function/expression
▶ test different versions of a code block
▶ easiest with ipython’s magic command

a**2 or pow(a,2)?

In [1]: a = 43563

In [2]: %timeit pow(a,2)
80.9 ns +/- 2.59 ns per loop (... of 7 runs, 10,000,000 loops each)

In [3]: %timeit a**2
59.1 ns +/- 0.133 ns per loop (... of 7 runs, 10,000,000 loops each)

Nicola Chiapolini, 9 July 2024 45 / 48

Introduction Test Debug Profile

cProfile & Pstats

Profiling identify where most time is spent
cProfile & profile standard python modules for profiling

pstats tool to look at profiling data

▶ run cProfile
python -m cProfile [-s cumtime] myscript.py
python -m cProfile [-o myscript.prof] myscript.py

▶ analyse output from shell
python -m pstats myscript.prof

stats # print statistics
sort # change sort order
callers # print callers
callees # print callees

Nicola Chiapolini, 9 July 2024 46 / 48

Introduction Test Debug Profile

Non-Standard Tools

▶ pyprof2calltree and kcachegrind: open cProfile output in GUI
python -m cProfile -o myscript.prof myscript.py
pyprof2calltree -i myscript.prof -k

▶ pprofile: line-granularity profiler
pprofile3 myscript.py

pprofile3 -f callgrind -o myscript.prof myscript.py
kcachegrind myscript.prof

▶ line_profiler: original line-granularity profiler
(needs code change)

https://pypi.org/project/pyprof2calltree/
https://kcachegrind.github.io/html/Home.html
https://github.com/vpelletier/pprofile
https://pypi.org/project/line-profiler/

Nicola Chiapolini, 9 July 2024 47 / 48

Introduction Test Debug Profile

DEMO

Nicola Chiapolini, 9 July 2024 48 / 48

Introduction Test Debug Profile

Final Thoughts

▶ testing, debugging and profiling can help you a lot

▶ using the right tools makes life a lot easier

▶ python comes with good tools included

▶ it’s as easy as it gets – there are no excuses

	Introduction
	Test
	unittest
	doctest & coverage
	coverage

	Debug
	pdb

	Profile
	timeit
	cProfile

