Nicola Chiapolini, 9 July 2024

Test, Debug, Profile

Scientific Programming with Python

Nicola Chiapolini

University of Zurich
Faculty of Science

9 July 2024

Based on a talk by Pietro Berkes
®0 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.


https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Nicola Chiapolini, 9 July 2024 2/48

Introduction es ebug Profile

Scientific Programming

Goal

» allow exploring many different approaches
» allow frequent changes and adjustments
» produce correct and reproducible results

Requirements

» bugs most be noticed

» code can be modify easily

» others can run code too

» scientist’s time is used optimally



Nicola Chiapolini, 9 July 2024 3/48
Introduction

Effect of Software Errors

—>

Frequency

—>
Severity



Nicola Chiapolini, 9 July 2024

ductio

Effect of Software Errors: Retractions

RETRACTION | VOLUVE 3 4 FEBRL

Retraction Notice to: How birds outperform humans in multi-
component behavior
Sara Letzner 2 (5« Onur Guntirkiin « Christian Beste =

0. hpsidsog 10018 202002000

PlumX Metrics.

(Current Biology 27, R996-R998; September 25, 2017)

In our Correspondence, we reported evidence leading us to conclude that pigeons are on par with
humans when tested with a behavioral task that demands simultaneous processing resources; in
particular, we claimed that pigeons show faster responses than humans when sub-tasks are
separated with a short STOP-CHANGE delay of 300 ms—the “SCD 300" condition (time
advantage of 200 ms). We have subsequently discovered, however, that the MATLAB script that
was used for the analysis of reaction times in the pigeon paradigm was wrongly indexed

ar (lV > cs > arXivi2402.14583

Computer Science > Digital Libraries
[Submitedon 7 Fob 2024]
Dataset Artefacts are the Hidden Drivers of the Declining
Disruptiveness in Science
Vincent Holst, Andres Algaba, Floriano Tori, Sylvia Wenmackers, Vincent Ginis
Park et al. [1] reported a decline In the disruptiveness of scientific and technological knowledge over
tme. Thelr main finding Is based on the computation of CO Indices, a measure of disruption n clation

networks [2], across almost 45 milion papers and 3.9 million patents. Due to a factual plotting mistake,
database entries with zero references were omited In the CD index distributions, hiding a large

Notes on fiber length measurements: A case
study in the underbelly of open source
neuroscience

Claude | Bajada *®! o &=, Robert £ Smith ¢! 9, &, Svenja Caspers ®

Show more

+ Add to Mendeley «& Share 33 Cite

22119738 »

https://doi.org/10.1016 .neuroimag  rights and content 2

Under a Creative Commons license » ® open access

Highlights
+ We present a case study where a feature request introduced a bug in a
neuroimaging software package.



Nicola Chiapolini, 9 July 2024

Introduction

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

» standard python tools
» ipython magic commands
» mostly command line



Nicola Chiapolini, 9 July 2024

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 9 July 2024 71748

Testing

Something you do anyway.

» run code and see if it crashes
» check if output makes sense
» run code with trivial input

> ...



8/48

Nicola Chiapolini, 9 July 2024

Formal Testing

» important part of modern software development
> unittest and integration tests

> tests written in parallel with code
» tests run frequently/automatically
> generate reports and statistics

C...]
replace predefined histogram ... ok
add a legend; change line color of last histogram to red ... ok

put title and axis labels ... ok

Ran 18 tests in 5.118s

0K
GoodBye!



Nicola Chiapolini, 9 July 2024 9/48

Benefits

» only way to trust your code
» faster development
» know where your bugs are

» fixing bugs will not (re)introduce others
» change code with out worrying about consistency

» encourages better code
» provides example/documentation

FAIL: test_result (test_fibonacci.FiboTest)
test 7th fibonacci number
Traceback (most recent call last):
File "test_fibonacci.py", line 18, in test_result
self.assertEqual (result, expect)
AssertionError: 21 != 13



Nicola Chiapolini, 9 July 2024 10/48

An Example

def remove(thelist, entry):
""" remove entry object from list """
for idx, item in enumerate(thelist):
if entry is item:
del thelist[idx]
break
else:
raise ValueError("Entry not in the list")

Assume we find this code in an old library of ours.



Nicola Chiapolini, 9 July 2024 10/48

An Example

def remove(thelist, entry):
""" remove entry object from list """
thelist.remove (entry)

We prefer to keep it simple! Everything fine, right?



An Example

def remove(thelist, entry):
""" remove entry object from list """
thelist.remove (entry)

ERROR: test_remove_array (__main__.RemoveTest)

Traceback (most recent call last):
File "list_tests.py", line 19, in test_remove_array
lrm.remove(l, x)
File ".../examples/list_removal.py", line 3, in remove
thelist.remove (entry)
ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()



11/48

Nicola Chiapolini, 9 July 2024

Start Testing

At the beginning, testing feels weird:

1. It's obvious that this code works
2. The tests are longer than the code
3. The test code is a duplicate of the real code

— it might take a while to get used to testing,
but it will pay off quiet rapidly.



Nicola Chiapolini, 9 July 2024

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 9 July 2024 13/48

unittest

» library for unittests
» part of standard python
> at the level of other modern tools

Alternatives

> pytest


https://docs.pytest.org/en/latest/

Nicola Chiapolini, 9 July 2024 14/

Anatomy of a TestCase

import unittest
class DemoTests(unittest.TestCase):

def test_boolean(self):
mnn tests start with 'test' """
self.assertTrue(True)
self.assertFalse(False)

def test_add(self):
" -docstring can be printed """
self.assertEqual(2+1, 3)

if name__ == "__main__":

mntegxecute all tests im module """

unittest.main()



apolini, 9 July 2024

Debug

Summary on Anatomy

Test Cases

» are subclass of unittest.TestCase
» group test units

Test Units

» methods, whose names start with test
» should cover one aspect

» check behaviour with "assertions"

» rise exception if assertion fails



Nicola Chiapolini, 9 July 2024 16/48

Running Tests

Option 1 execute all test units in all test cases of this file
if __name__ == "__main__":
unittest.main(verbosity=1)

python test_module.py

Option 2 Execute all tests in one file
python -m unittest [-v] test_module

Option 3 Discover all tests in all submodules

python -m unittest discover [-v]



Nicola Chiapolini, 9 July 2024 17/48

TestCase.assertSomething

» check boolean value

assertTrue('Hi'.islower()) # fatil
assertFalse('Hi'.islower()) # pass

» check equality

assertEqual(2+1, 3) # pass
""" gssertEqual can compare all sorts of objects """
assertEqual ([2]+[1], [2, 11) # pass

» check numbers are close
from math import sqrt, pi
assertAlmostEqual (sqrt(2), 1.414, places=3) # pass
" yalues are rounded, not truncated """
assertAlmostEqual(pi, 3.141, 3) # fail
assertAlmostEqual(pi, 3.142, 3) # pass



Nicola Chiapolini, 9 July 2024 18/48

TestCase.assertRaises

» most convenient with context managers
with self.assertRaises(ErrorType):
do_something()
do_some_more ()

» Important: use most specific exception class

bad_file = "inexistent"
with self.assertRaises(FileNotFoundError): # raises NameError
open(bad_fil, 'r')

with self.assertRaises(Exception):
open(bad_fil, 'r') # pass



Nicola Chiapolini, 9 July 2024 19/48

TestCase.assertMoreThings

assertGreater(a, b)
assertlLess(a, b)

assertRegex(text, regexp)
assertIn(value, sequence)
assertIsNone(value)
assertIsInstance(my_object, class)

assertCountEqual (actual, expected)

complete list at
https://docs.python.org/3/library/unittest.html


https://docs.python.org/3/library/unittest.html

Nicola Chiapolini, 9 July 2024 20/48

TestCase.assertNotSomething

Most of the assert methods have a Not version

assertEqual
assertNotEqual

assertAlmostEqual
assertNotAlmostEqual

assertIsNone
assertIsNotNone



Nicola Chiapolini, 9 July 2024

Testing with numpy

21/48

numpy arrays have to be compared elementwise

class SpecialCases(unittest.TestCase):
def test_numpy(self):
a = numpy.array([1, 2])
b = numpy.array([1, 2])
self .assertEqual(a, b)
ERROR: test_numpy (__main__.SpecialCases)
Traceback (most recent call last)

[..]
ValueError: The truth value
element is ambiguous. Use a.

of an array with more than one
any() or a.all()



Nicola Chiapolini, 9 July 2024 22/48

numpy.testing

» defines appropriate function

numpy . testing.assert_array_equal(x, y)
numpy .testing.assert_array_almost_equal(x, y, decimal=6)

» use numpy functions for more complex tests

numpy . all(x) # True if all elements of x are true
numpy . any (x) # True if any of the elements of x© is true
numpy.allclose(x, y) # True if element-wise close

Example

" test that all elements of = are between 0 and 1 """
assertTrue(all(logical_and(x > 0.0, x < 1.0))



Nicola Chiapolini, 9 July 2024 23/48

Strategies for Testing

» What does a good test look like?
» What should | test?

» What is special for scientific code?



Nicola Chiapolini, 9 July 2024 24/48

What does a good test look like?

Given put system in right state

> create objects, initialise parameters, ...
» define expected result

When action(s) of the test
» one or two lines of code

Then compare result with expectation
> set of assertions



Nicola Chiapolini, 9 July 2024 25/48

What does a good test look like? — Example

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
# given
string_ = 'HeLl0 wOrld'
expected = 'hello world'

# when
result = string_.lower()

# then
self .assertEqual (result,expected)



Nicola Chiapolini, 9 July 2024 26/48

What should | test?

» simple, general case
string_ = 'HelLl0 wOrld'

» corner cases

string_ = ''
string_ = 'hello’
string_ = '1+2=3'

often involves design decisions
» any exception you raise explicitly

» any special behaviour you rely on



Nicola Chiapolini, 9 July 2024 2

Reduce Overhead 1: Loops

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
# given
# Each test case is a tuple (input, ezpected)
test_cases = [('HelLl0 wOrld', 'hello world'),
('hi', 'hi'),
('123 ([?', '123 ([?"),
¢, 91
for string_, expected in test_cases:
# run several subtests
# when
output = string_.lower()
# then
self.assertEqual (output, expected)



Nicola Chiapolini, 9 July 2024 28/

Reduce Overhead 1: Subtests

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
# given
# Each test case is a tuple (input, ezpected)
test_cases = [('HeL1l0 wOrld', 'hello world'),
('hi', 'hi'),
('123 ([?', '123 ([?"),
¢, Ml
for string_, expected in test_cases:
with self.subTest(config = string ):
# when
output = string_.lower()
# then
self.assertEqual (output, expected)



Nicola Chiapolini, 9 July 2024 29/48

Reduce Overhead 2: Fixtures

> allow to use same setup/cleanup for several tests

» useful to

» create data set at runtime
» |oad data from file or database
» create mock objects

» available for test case as well as test unit

class FixureTestCase(unittest.TestCase):

Q@classmethod
def setUpClass(cls): # called at start of TestCase
def setUp(self): # called before each test

def tearDown(self): # called at end of each test



Nicola Chiapolini, 9 July 2024 30/48

What is special for scientific code?
often deterministic test cases very limited/impossible

Numerical Fuzzing

» generate random input (print random seed)
> still need to know what to expect

Know What You Expect

» use inverse function

» generate data from model

» add noise to known solutions

» test general routine with specific ones

» test optimised algorithm with brute-force approach



Nicola Chiapolini, 9 July 2024 31/48

Automated Fuzzying: Hypothesis (ot in standard library)

hypothesis generates test inputs according to given properties.

import unittest, numpy
from hypothesis import given, strategies as st

class SumTestCase(unittest.TestCase):
Ogiven(st.lists(st.integers(), min_size=2, max_size=2))

def test_sum(self, vals):
self .assertEqual(vals[0]+vals[1], numpy.sum(vals))

Why?

» cover large search-space (default 100 inputs)
» good for finding edge cases
» less manual work


https://hypothesis.works/

Nicola Chiapolini, 9 July 2024 32/48
ntro O ebug

Profile

Test Driven Development (TDD)

Tests First

» choose next feature
> write test(s) for feature
» write simplest code

Benefits

» forced to think about design before coding
» code is decoupled and easier to maintain
» you will notice bugs



Nicola Chiapolini, 9 July 2024

DEMO



Nicola Chiapolini, 9 July 2024

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 9 July 2024

35/48

doctest

> poor man’s unittest

» ensure docstrings are up-to-date

def add(a,b):

mnqdd two numbers

>>> add(40,2)
42

mmn

return atb

python -m doctest [-v] my_doctest.py

Trying:
add (40,2)
Expecting:
42
ok
1 items had no tests:
my_doctest

1 items passed all tests:
1 tests in my_doctest.add
1 tests in 2 items.
1 passed and O failed.
Test passed.



Nicola Chiapolini, 9 July 2024 36/48

Code Coverage

» it's easy to leave part untested

» features activated by keyword
» code to handle exception

» coverage tools track the lines executed
coverage.py

» python script
» produces text and HTML reports

python -m coverage run test_file.py
python -m coverage report [-m] [--omit="/usr*x"]

» not in standard library
get from https://coverage.readthedocs.io/en/latest/


https://coverage.readthedocs.io/en/latest/

Nicola Chiapolini, 9 July 2024

DEMO



Nicola Chiapolini, 9 July 2024

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Debugging

» use tests to avoid bugs and limit ,search space”
» avoid print statements
» use debugger

pdb — the Python debugger

» command line based (but integrated in most IDEs)

» opens an interactive shell
> allows to
» stop execution anywhere in your code
» execute code step by step
» examine and change variables
» examine call stack



Nicola Chiapolini, 9 July 2024 40/48

Entering pdb

> enter at start of file
python -m pdb myscript.py

» enter at statement/function
import pdb
# your code here
pdb.run(expression_string)

» enter at point in code
# some code here
# the debugger starts here
import pdb; pdb.set_trace()
# rest of the code

» from ipython

%pdb # enter pdb on exception
/debug # enter pdb after exception



DEMO



Nicola Chiapolini, 9 July 2024 42/48

Profile

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 9 July 2024 43/48

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible



Nicola Chiapolini, 9 July 2024 43/48

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible



44/ 48

Nicola Chiapolini, 9 July 2024
timeit

» precise timing for function/expression
» test different versions of a code block
» easiest with ipython’s magic command

ax*2 or pow(a,2)?
In [1]: a = 43563

In [2]: Ytimeit pow(a,2)
80.9 ns +/- 2.59 ns per loop (... of 7 rums, 10,000,000 loops each)

In [3]: %timeit ax*2
59.1 ns +/- 0.133 ns per loop (... of 7 rumns, 10,000,000 loops each)



Nicola Chiapolini, 9 July 2024 45/48

cProfile & Pstats

Profiling identify where most time is spent
cProfile & profile standard python modules for profiling
pstats tool to look at profiling data

» run cProfile

python -m cProfile [-s cumtime] myscript.py
python -m cProfile [-o myscript.prof] myscript.py

» analyse output from shell
python -m pstats myscript.prof

stats # print statistics
sort # change sort order
callers # print callers
callees # print callees



Nicola Chiapolini, 9 July 2024 46/48

Non-Standard Tools

» pyprof2calltree and kcachegrind: open cProfile output in GUI

python -m cProfile -o myscript.prof myscript.py
pyprof2calltree -i myscript.prof -k

» pprofile: line-granularity profiler
pprofile3 myscript.py

pprofile3 -f callgrind -o myscript.prof myscript.py
kcachegrind myscript.prof

» line_profiler: original line-granularity profiler
(needs code change)


https://pypi.org/project/pyprof2calltree/
https://kcachegrind.github.io/html/Home.html
https://github.com/vpelletier/pprofile
https://pypi.org/project/line-profiler/

DEMO



Nicola Chiapolini, 9 July 2024 48/48

Final Thoughts

» testing, debugging and profiling can help you a lot
» using the right tools makes life a lot easier
» python comes with good tools included

> it's as easy as it gets — there are no excuses



	Introduction
	Test
	unittest
	doctest & coverage
	coverage

	Debug
	pdb

	Profile
	timeit
	cProfile


