
Additional Exercise

from Pietro Berkes, updated by Nicola Chiapolini

July 9, 2024

Before you start:

– download the file carpentry_exercises.zip from http://www.physik.uzh.ch/~python/python/

lecture3/

– unzip it into a suitable directory
– create a git repository and add all files

Remember to commit every significant change to the git repository with a meaningful message.

1 Writing a test suite [basic]

Goals: Write a test suite using the unittest module.

Pretend you have just written the string function center from the module string (https://docs.python.
org/3/library/stdtypes.html#str.center). Now write a test suite, test_center.py, that tests this
function and makes sure it works as documented. At each step, run the tests and make sure they pass
(insert a call to unittest.main() at the end of the script as shown in the slides).

In the suite, write three test cases:

a) The first test case checks the functionality of the function, leaving the argument fillchar set to its
default value. Control that the function works as advertised for

– odd and even widths
– a width smaller than the length of the string
– an empty input string
– a string containing spaces to either extremity

Test that the length of the returned string is correct and that it looks like you expect it to.

Hint: when the number of spaces to be added is odd, there are two possible ways to centre a string.
The docstring does not specify which one is correct, so you should test that the returned string is
one or the other.

b) The second test case checks the functionality of string.center, with fillchar set to specific values.
Test using a letter, a numerical value, and the default value.

c) Finally, test that string.center raises a TypeError when fillchar is set to an empty string, and
to a string longer than one character.

1

http://www.physik.uzh.ch/~python/python/lecture3/
http://www.physik.uzh.ch/~python/python/lecture3/
https://docs.python.org/3/library/stdtypes.html#str.center
https://docs.python.org/3/library/stdtypes.html#str.center


2 Testing with numpy and numerical fuzzing [basic]

Goals: Use the numpy.testing utility functions and numerical fuzzing techniques to test numerical code.

Write a new test suite, test_multinomial.py, to test the function numpy.random.multinomial (docu-
mented at https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multinomial.

html).

a) Read the documentation and play with the function using ipython until you are sure you understand
how it works (always leave the size argument to its default value).

b) Write a first test case, testing the function in deterministic cases:

– when one of the entries has probability 1.0 and the others 0.0, the returned samples must
consist only of the entry with probability mass

– when one of the entries has probability 0.0, it must not appear in the returned samples

c) Write a numerical fuzzing test case that verifies that, with a large number of samples, the sampling
frequency of each entry is close to its probability.

2

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multinomial.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multinomial.html


3 The game Set® [advanced]

Goals: Write a solver for the game Set and optimise it until it flies.

Set is a logic game consisting in a deck of cards that vary along 4 dimensions: colour, shape, texture, and
number. For each dimensions, there are 3 possible features (e.g., there are 3 possible textures: full, empty,
striped). A valid set is formed by three cards that have on each dimension either the same feature, or
three different features.

In the solitary version of the game, 12 random cards are put on the table, and the player has to find
as many valid sets as possible. To test that you understand the rules, visit https://www.nytimes.com/
crosswords/game/set/ and solve the daily puzzle (but don’t get too distracted!).

In the code, we are going to represent each card by a 4–dimensional vector (for color, shape, texture, and
number); each element is either 0, 1, or 2, representing the three possible features for each dimension. For
example, two cards might be represented as [2, 2, 0, 1] and [2, 0, 0, 0]; this means that they have
the same features for dimensions 0 and 2 and different features for dimensions 1 and 3.

Enter the directory set.

a) The test module test_set.py contains a test, test_is_set, for a function that takes a list of cards
and three indices and returns True if the cards at those indices form a set. Implement is_set in
set_solver.py .

b) The test module also contains a test for a solver that finds all possible sets in a list of cards. Write
a brute–force Set solver, find_sets: cycle through all possible triplets and call is_set for each
triplet. If it is a set, append the indices of the cards to a list. Return the list.

c) The brute–force approach is brutally inefficient. Write a faster version, find_sets_fast, using
list comprehensions and the function combinations from the module itertools (https://docs.
python.org/3/library/itertools.html). Test the new function using fuzzing: generate random
cards and test that the output of find_sets_fast is the same of the brute force solver. (Use the
function random_cards in set_solver.py to generate random draws of cards.)

d) Use timeit to measure the increase in speed.

e) Given any two cards, there is one and only one card that makes them form a valid set. Use this idea
to write a much faster Set solver, and measure its performance.

4 Sudoku solver [advanced]

Goals: Use your new toolbox to develop a Sudoku solver!

Enter the directory sudoku. If you don’t know what Sudoku is (really?), have a look at https://en.
wikipedia.org/wiki/Sudoku.

a) Look at the test cases in test_sudoku.py . Write a module sudoku.py that makes the tests pass
(this is equivalent to writing a Sudoku solution verifier and a Sudoku solver).

Some hints:

– The file problems.py contains two dictionaries with Sudoku boards and their solutions.
Each board is represented as a 2D list. Write three helper functions, get_row(grid, nr),
get_column(grid, nr), and get_box(grid, nr), that return the nr-th row, column or box of
the Sudoku grid. These will come very handy. Make sure you write tests for the new functions!

– Start by working on the Sudoku verifier, sudoku.is_solution.
– Use a brute-force approach to solve the Sudoku board in sudoku.solve_sudoku:

i. Start from the first empty cell in the grid
ii. Starting from 1, test all digits and check if they violate the constraints; if not, proceed to

the next empty cell
iii. If none of the digits is allowed in a given cell, leave it blank and go back one cell, incrementing

its value by one
iv. Continue until the whole grid is filled
More information about the brute force approach is available on Wikipedia at https://en.
wikipedia.org/wiki/Sudoku_solving_algorithms

b) Check that your code adheres to Python standards using pycodestyle:

3

https://www.nytimes.com/crosswords/game/set/
https://www.nytimes.com/crosswords/game/set/
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms


python3 -m pycodestyle sudoku.py

Improve your code until the checker is happy.

c) Profile your code on the hard2 problem. Save the profile results in sudoku.profile. Examine the
results and discuss what could be optimised and how.

4


	Writing a test suite [basic]
	Testing with numpy and numerical fuzzing [basic]
	The game Set® [advanced]
	Sudoku solver [advanced]

