Refugees
July 9, 2024

1 Pandas

o https://pandas.pydata.org

o very high-level data containers with corresponding functionality

« many useful tools to work with time-series (look at Series.rolling)

o many SQL-like data operations (group, join, merge)

o Interface to a large variety of file formats (see pd.read_[...] functions)

» additional package with data-interface/API to many data repositories (https://pandas-
datareader.readthedocs.io/en/latest /remote__data.html)

[1]: | import pandas as pd

1.1 Basic Data Structures
1.1.1 Series
One-dimensional ndarray with axis labels (called index).

Series can be created like an array

[2]: pd.Series([11,13,17,19,23])

[21: O 11
1 13
2 17
3 19
4 23

dtype: int64
or, if you want a special index

[3]: series = pd.Series([11,13,17,19,23], index=['a', 'b', 'c', 'd', 'e'])
print (series)

a 11
b 13
c 17
d 19
e 23

dtype: int64

[4] :
[4]:
[5]:

[5]:

[6]:

[7]:

[8]:

to get the content back you can use

series.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
series.values

array([11, 13, 17, 19, 23])
but the power of pandas lies in all the other attributes

#series. [TAB]

1.1.2 DataFrame
The primary pandas data structure.

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes.
(index: row labels, columns: column labels) Can be thought of as a dict-like container for Series
objects.

The easiest way to create a DataFrame is to read it from an input file (see later)

In addition there are many ways to create DataFrames manually. Most straight forward probably
is to use a dict of iterables. (Series, Lists, Arrays). Pandas tries to choose sensible indexes.

frame = pd.DataFrame({"primes": series, "fibo": [1,1,2,3,5], "0-4": range(5)})

print (frame)

primes fibo 0-4
a 11 1 0
b 13 1 1
c 17 2 2
d 19 3 3
e 23 5 4

2 Refugee Example

We now want to use pandas to work with data from the World Bank. My goal is to create a plot
showing the burden refugees put on different countries. For this we will plot the fraction of refugee
in a give countries population versus that countries GDP.

I downloaded and extracted the following data-sets from the Worldbank
website manually: * Refugee population by country or territory of asy-
lum: https://data.worldbank.org/indicator/SM.POP.REFG ~ * Population, total:
https://data.worldbank.org/indicator/SP.POP.TOTL * GDP per capita (current US$):
https://data.worldbank.org/indicator /NY.GDP.PCAP.CD

[9]:

[10]:

[11]:

[11]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2.1 Loading and Accessing Data

loading a data file with pandas is trivial

refugees = pd.read_csv("data/refugee-population.csv", skiprows=4)

refugees.head()

S W N ~- O s W NN - O > W NN -, O s W N - O

S W N - O

Country Name Country Code

Aruba

Africa Eastern and Southern
Afghanistan
Africa Western and Central

Refugee
Refugee
Refugee
Refugee
Refugee

1961
NaN
NaN
NaN
NaN
NaN

2018
NaN

5114399.
72228.
1285773.
39856.

Unnamed:

1962
NaN
NaN
NaN
NaN
NaN

population
population
population
population
population

1963
NaN
NaN
NaN
NaN
NaN

20

0 5087755
0 72227
0 1315229
0 25793

68
NaN
NaN
NaN
NaN
NaN

[5 rows x 69 columns]

A

by
by
by
by
by

1964
NaN
NaN
NaN
NaN
NaN

19

NaN

.0
.0
.0
.0

ngola

country
country
country
country
country

1965
NaN
NaN
NaN
NaN
NaN

2020

NaN
5183533.0
72278.0
1474135.0
25791.0

ABW
AFE
AFG
AFW
AGO

Indicator Name Indicator Code

territory
territory
territory
territory
territory

2015

NaN
3333273.0
257553.0
1138010.0
15547.0

2021

NaN
5436720.0
66949.0
1631057.0
26045.0

of ..
of ..
of ..
of ..
of ..

SM
SM
SM
SM
SM

2016

NaN
3990478.0
59770.0
1200854.0
15547.0

2022

NaN
5412266.0
52159.0
1702392.0
25514.0

.POP.REFG
.POP.REFG
.POP.REFG
.POP.REFG
.POP.REFG

2017

NaN
5155400.0
75927.0
1172523.0
41119.0

2023

NaN
5553759.0
34826.0
2296159.0
25174.0

1960 \
NaN
NaN
NaN
NaN
NaN

As you can see pandas choose the right column labels and numbered the rows continously.

We can easily change the row labels (the index) to one of the columns.

[12]: refugees.set_index(["Country Code"], inplace=True)

[13]: refugees.head()

[13]: Country Name \
Country Code
ABW Aruba
AFE Africa Eastern and Southern
AFG Afghanistan
AFW Africa Western and Central
AGO Angola

Indicator Name \
Country Code
ABW Refugee population by country or territory of .
AFE Refugee population by country or territory of .
AFG Refugee population by country or territory of .
AFW Refugee population by country or territory of .
AGO Refugee population by country or territory of .
Indicator Code 1960 1961 1962 1963 1964 1965 1966 .. \
Country Code
ABW SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AFE SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AFG SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AFW SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AGO SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
2015 2016 2017 2018 2019 \
Country Code
ABW NaN NaN NaN NaN NaN
AFE 3333273.0 3990478.0 5155400.0 5114399.0 5087755.0
AFG 257553.0 59770.0 75927.0 72228.0 72227.0
AFW 1138010.0 1200854.0 1172523.0 1285773.0 1315229.0
AGO 15547.0 15547.0 41119.0 39856.0 25793.0
2020 2021 2022 2023 Unnamed: 68

Country Code
ABW NaN NaN NaN NaN NaN
AFE 5183533.0 5436720.0 5412266.0 5553759.0 NaN
AFG 72278.0 66949.0 52159.0 34826.0 NaN
AFW 1474135.0 1631057.0 1702392.0 2296159.0 NaN
AGO 25791.0 26045.0 25514.0 25174.0 NaN

[6 rows x 68

columns]

Now it’s easy to select rows or columns

[14]: refugees.loc[["CHE","DEU"]]

[14]:

[15]:

[15]:

[16]:

[16]:

Country Code
CHE
DEU

Country Code
CHE
DEU

Country Code
CHE
DEU

Country Code
CHE
DEU

Country Code
CHE
DEU

[2 rows x 68

Country Name Indicator Name \
Switzerland Refugee population by country or territory of ..
Germany Refugee population by country or territory of ..
Indicator Code 1960 1961 1962 1963 1964 \
SM.POP.REFG 20000.0 20000.0 20000.0 20000.0 20000.0
SM.POP.REFG 197000.0 190000.0 185000.0 182000.0 180000.0
1965 1966 2015 2016 2017 '\
20000.0 20500.0 73326.0 82668.0 93030.0
180000.0 140000.0 316098.0 669468.0 970357.0
2018 2019 2020 2021 2022 \
104011.0 110162.0 115798.0 118829.0 182474.0
1063835.0 1146682.0 1210596.0 1255694.0 2075445.0
2023 Unnamed: 68
192507.0 NaN
2593007.0 NaN
columns]

refugees[["1990","2000"]] .head ()

Country Code
ABW
AFE
AFG
AFW
AGO

1990

NaN
4709569.0
50.0
932052.0
11557.0

2000

NaN
2444941.0
NaN
968325.0
12086.0

refugees.get (["1990","2000"]) .head ()

Country Code
ABW

1990

NaN

2000

NaN

AFE 4709569.0 2444941.0

AFG 50.0 NaN
AFW 932052.0 968325.0
AGO 11657.0 12086.0

2.2 Working with a Single Country

With this we now choose the data for one country, remove all missing values and then create a plot:

[17]: che = refugees.loc["CHE"] [[str(year) for year in range(1990,2024)]]

[18]: | che.dropna() .plot ()
plt.show()

200000

180000

160000

140000

120000

100000

80000 +

60000

40000

T T T T T T T
1990 1995 2000 2005 2010 2015 2020

Usually it is easier to work with real datetime objects instead of strings. So we convert the index
to datetime

[19]: che.index.values

[19]: array(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',

'2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',
'2022', '2023'], dtype=object)

[20]: che.index = pd.to_datetime(che.index, format="%Y")
print(che.index)

DatetimeIndex(['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01',
'1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01',
'1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01',
'2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01',
'2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
'2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
'2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01',
'2018-01-01', '2019-01-01', '2020-01-01', '2021-01-01',
'2022-01-01"', '2023-01-01'],

dtype='datetime64[ns]', freq=None)

As mentioned in the introduction, pandas offers a very usefull rolling method

[21]: che.plot()
che.rolling(center=False,window=5) .mean() .plot ()
plt.show()

200000

180000

160000

140000

120000

100000

80000 +

60000

40000 A

L e L I B B B B L B B
1990 1995 2000 2005 2010 2015 2020

[22]:

2.3 Removing Unwanted Data

We now want to create a scatter plot with refugees divided by population vs. gdp-per-captita. For
each data set we will use the mean of the last 5 years.

Some of the rows and columns in the World-Bank Files are of no interest for this. We can remove
these easily.

2.3.1 Excluding Non-Countries

The World-Bank provides meta-data for each country, where we can identify rows with non-
countries (e.g. regional aggregates)

'head data/metadata-countries_population.csv

"Country Code","Region","IncomeGroup","SpecialNotes","TableName",

"ABW","Latin America & Caribbean","High income","","Aruba",

"AFE","","" ,"26 countries, stretching from the Red Sea in the North to the Cape
of Good Hope in the South (https://www.worldbank.org/en/region/afr/eastern-and-
southern-africa)","Africa Eastern and Southern",

"AFG","South Asia","Low income","The reporting period for national accounts data
is designated as either calendar year basis (CY) or fiscal year basis (FY). For
this country, it is fiscal year-based (fiscal year-end: March 20). Also, an
estimate (PA.NUS.ATLS) of the exchange rate covers the same period and thus
differs from the official exchange rate (CY).

In addition, the World Bank systematically assesses the appropriateness of
official exchange rates as conversion factors. In this country, multiple or dual
exchange rate activity exists and must be accounted for appropriately in
underlying statistics. An alternative estimate ("alternative conversion factor"
- PA.NUS.ATLS) is thus calculated as a weighted average of the different
exchange rates in use in the country. Doing so better reflects economic reality
and leads to more accurate cross-country comparisons and country classifications
by income level. For this country, this applies to the period 1960-2006.
Alternative conversion factors are used in the Atlas methodology and elsewhere
in World Development Indicators as single-year conversion
factors.","Afghanistan",

"AFW", ", 122 countries, stretching from the westernmost point of Africa,
across the equator, and partly along the Atlantic Ocean till the Republic of
Congo in the South (https://www.worldbank.org/en/region/afr/western-and-central-
africa)","Africa Western and Central",

"AGO","Sub-Saharan Africa","Lower middle income","The World Bank systematically
assesses the appropriateness of official exchange rates as conversion factors.
In this country, multiple or dual exchange rate activity exists and must be
accounted for appropriately in underlying statistics. An alternative estimate
("alternative conversion factor" - PA.NUS.ATLS) is thus calculated as a weighted
average of the different exchange rates in use in the country. Doing so better
reflects economic reality and leads to more accurate cross-country comparisons
and country classifications by income level. For this country, this applies to

[23]:

[24]:

[24] :

[25]:

[26] :

[26]:

[27]:

[28]:

[29] :

[30]:

the period 1994-2023. Alternative conversion factors are used in the Atlas
methodology and elsewhere in World Development Indicators as single-year
conversion factors.","Angola",

"ALB","Europe & Central Asia","Upper middle income","","Albania",
"AND","Europe & Central Asia","High income","","Andorra",

We load this file and extract the two relevant columns

meta = pd.read_csv("data/metadata-countries_population.csv")

meta.columns

Index(['Country Code', 'Region', 'IncomeGroup', 'SpecialNotes', 'TableName',
'Unnamed: 5'],
dtype="'object"')
meta = metal[['Country Code', 'Region']]

meta.head()

Country Code Region
0 ABW Latin America & Caribbean
1 AFE NaN
2 AFG South Asia
3 AFW NaN
4 AGO Sub-Saharan Africa
meta.set_index("Country Code", inplace=True)

From this we create a list of non-countries

non_countries = meta.loc[meta.Region.isnull()].index
print(non_countries)

Index(['AFE', 'AFW', 'ARB', 'CEB', 'CSS', 'EAP', 'EAR', 'EAS', 'ECA', 'ECS',
'EMU', 'EUU', 'FCS', 'HIC', 'HPC', 'IBD', 'IBT', 'IDA', 'IDB', 'IDX',
'LAC', 'LCN', 'LDC', 'LIC', 'LMC', 'LMY', 'LTE', 'MEA', 'MIC', 'MNA',
'NAC', 'OED', '0SS', 'PRE', 'PSS', 'PST', 'SAS', 'SSA', 'SSF', 'SST',
'"TEA', 'TEC', 'TLA', 'TMN', 'TSA', 'TSS', 'UMC', 'WLD'],
dtype='object', name='Country Code')

and finally exclude the relevant rows

refugees = refugees.drop(non_countries)

2.3.2 Excluding Columns

The data contains a few rows with unneeded text

refugees.columns

[30]: Index(['Country Name', 'Indicator Name', 'Indicator Code', '1960', '1961',

'1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',
'1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979',
'1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',
'1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
'2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
'2016', '2017', '2018', '2019', '2020', '2021', '2022', '2023',
'Unnamed: 68'],

dtype="'object')

In addition, the last column might be missig a lot of data

[31]: np.sum(refugees["2023"] .notnull())

[31]: 165
so we can create a list of all interesting columns

[32]: useful_cols = []
last_year = 2023 # depending on output above
for year in range(last_year-5,last_year+1):
useful_cols.append(str(year))

[33]: useful_cols
[33]: ['2018', '2019', '2020', '2021', '2022', '2023']

with this, we:

o select the reduced dataset
o switch the index to Country Code
e calculate the mean for each country

[34]: refugees = refugees[useful_cols]

[35]: refugee_means = refugees.mean(axis=1)

2.4 Loading Additional Files

Of course we could execute these commands again manually for the two remaining data-files.
However, the proper way to solve this is to create a function for this. Especially since all files have
the exact same structure.

[36]: def load_file(file):
"""Load and process a Worldbank File"""
data = pd.read_csv(file, skiprows=4)
data.set_index("Country Code", inplace=True)
data.drop(non_countries, inplace=True)
data = datal[useful_cols]

10

return data.mean(axis=1), data
[37]: gdp_means, gdp = load_file("data/gdp-per-capita.csv")
[38]: gdp_means.head()

[38]: Country Code
ABW 29851.603885

AFG 442.053744
AGO 2225.540349
ALB 6263.667603

AND 42067.093210
dtype: float64

[39]: gdp.head()

[39]: 2018 2019 2020 2021 '\

Country Code

ABW 30918.483584 31902.809818 24008.127822 29127.759384

AFG 492.090631 497.741431 512.055098 355.777826

AGO 2540.508879 2191.347764 1450.905111 1927.474078

ALB 5287.660801 5396.214243 5343.037704 6377.203096

AND 42904.828456 41328.600498 37207.221999 42066.490518
2022 2023

Country Code

ABW 33300.838819 NaN

AFG 352.603733 NaN

AGO 2033.484644 2309.521620

ALB 6810.114041 8367.775731

AND 42350.697069 46544 .720720

[40]: population_means, population = load_file("data/population.csv")

2.5 Creating the Plot

We now combine our three Series with means into one DataFrame and create our plot.

[41]: data = pd.DataFrame({"gdp": gdp_means, "refugees": refugee_means/
~population_means}) .dropna()

(Here we loose some countries with missing data.)

[42]: data.plot.scatter("gdp", "refugees")
plt.show()

11

051
0.4
0.3
@]
il
E?]
£ 0.2 1
0.1
L]
L]
L] L]
[
0.0 1 hﬁ\,'- % % ¢ o °
T T T T T
0 50000 100000 150000 200000

gdp

We can quickly find out who the three top countries are:

[43]: data.where(data["refugees"]>0.1).dropna()

[43]: gdp refugees
Country Code
JOR 4208.429706 0.274945
LBN 5843.601048 0.238846
PSE 3549.825962 0.488927

To improve readability:

o we switch to a log-log axis (we need to exclude countries with too small refugee numbers)
o we highlight one selected country
o We add a title

[44]: ax = datal[data["refugees"] > le-10].plot.scatter(y="refugees", x="gdp",,
~loglog=True)
ax = data.loc[["CHE"]] .plot.scatter(y="refugees", x="gdp", ax=ax, color="r",
~label="Switzerland")
plt.title("refugees fraction vs. gdp")
plt.show()

12

[45] :

[45] :

[46] :

[47]:

[47] :

refugees fraction vs. gdp

107 3
] L e Switzerland
] * 9
-1
10 3 o®
b .
i -- -- " -- . * f
10_2‘5 s ; . s l* ., . -&I T ™ . ®
] L ™ L TR
1 s -~ . '.- . .'-F oy
w 1073 3 % «® o o .
W 3 *od, o, %2 % . . »
o] s o ., . - .
= | . % *® o L W
Y 1074 5 °* * g s 4 *
: ° " * 5 e 0o, ¢
]) s e s @
1 . * e, .
1_(:.—5_§ L] o -- L] ™
] .
] ™
1075 4 ¢
™
1 ™
lﬂ_? T LB B B | T L B B R | T LB B R L | T
103 104 107
gdp

again we can print the info for one country

data.loc["CHE"]
gdp 90323.060451

refugees 0.015824
Name: CHE, dtype: float64

2.5.1 Highlighting a Full Region

Based on the meta data provided by the World Bank, we can highlight a region

europe = meta.loc[meta.Region == "Europe & Central Asia"].index

europe [:10]

Index(['ALB', 'AND', 'ARM', 'AUT', 'AZE',
dtype='object', name='Country Code')

'BEL', 'BGR', 'BIH',

13

'BLR', 'CHE'],

[48] :

ax = datal[data["refugees"] > 1le-10].plot.scatter(y="refugees", x="gdp",.
~loglog=True)

ax = data.loc[data.index.intersection(europe)].plot.scatter(y="refugees",,
~x="gdp", ax=ax, color="r", label="Europe & Central Asia")

plt.title("refugees fraction vs. gdp")

plt.show()
) refugees fraction vs. gdp
10% 3
. . ® Europe & Central Asia
i L]
1071 4
E o*
] .
i -- . [] " -- . I * f
m_z_g . ; % o '* . . o sven g *
] L ™ -' L .0 g
] - 9 » A . .l-. L L]
w 1073 3 i «® e 9 .
o E *ed, 0y © * . *
g] s o e X & o .
E i] - L -- ™ ° % ’ L W
v 10_4 3 ¢ * e ® o ™]]
] 2 - L] L]
] " o0 s o
1 . * e, .
L]
10-3 3 L] o L L] ™
5 . .
1075 3 ‘
.
E L]
lﬂ_? T L B B B B | T LA B B N B B | T L B B L B B | T
103 104 10°
gdp

(As we lost some countries with missing data when we called dropna above, we need the
data.index.intersection-call to select only country codes really contained in our data.)

2.6 Fitting
We now look at a tiny subset of this data and look at ways to fit a function to it.

Scipy preparse a huge number of options, we will look at three options of increasing complexity
and flexibility.

2.6.1 Preparations

first we select our subset

14

[49] :

[50] :

[50]:

[51]:

europe_small = ['AUT',
'DEU',
'FRA',
'ITA',

]

data_eu = data.loc[europe_small] .dropna()
data_eu

gdp

Country Code

AUT
DEU
FRA
ITA

52072.030011
49064 .065027
41708.479489
35016.983603

refugees

0.020003
0.018667
0.007363
0.003547

ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")

plt.title("refugees fraction vs. gdp")

plt.show()

refugees fraction vs. gdp

0.0200 A

0.0175 ~

0.0150 ~

0.0125 ~

refugees

0.0100 ~

0.0075 A

0.0050 ~

T T
35000 37500

T
40000

T T T T
42500 45000 47500 50000
gdp

and we create a vector with all the x values we will need to plot our fit result

15

T
52500

[52]:

[53]:

[54] :

[55]:

x = np.linspace(data_eul["gdp"] .min(), data_eu["gdp"].max(), 100)

2.6.2 polyfit

Polyfit is probably the easiest way to fit a polynome to given data.

from numpy import polyfit, polyval

res = polyfit(data_eu["gdp"], data_eu["refugees"],1)
print(res)

[1.04719896e-06 -3.41693157e-02]

ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, polyval(res, x))

plt.title("refugees fraction vs. gdp")

plt.show()

refugees fraction vs. gdp

0.0200 ~

0.0175 ~

0.0150 ~

0.0125 ~

refugees

0.0100 ~

0.0075 A

0.0050

0.0025 ~

T T T T T T T
35000 37500 40000 42500 45000 47500 50000
gdp

2.6.3 curve_ fit

With curve_fit you can define a complex fit function.

16

T
52500

[66]: from scipy.optimize import curve_fit

[67]: def fit_function(x,b,c):
return b*x+c

[58]: res = curve_fit(fit_function, data_eu["gdp"], data_eu["refugees"])
print(res)

(array ([1.04719896e-06, -3.41693156e-02]), array([[2.25835731e-14,

-1.00418738e-09],
[-1.00418738e-09, 4.56445922e-05]1))

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, *(res[0])))
plt.title("refugees fraction vs. gdp")
plt.show()

refugees fraction vs. gdp

0.0200

0.0175 ~

0.0150 ~

0.0125 ~

refugees

0.0100 ~

0.0075 ~

0.0050 A

0.0025

T T T T T T T T
35000 37500 40000 42500 45000 47500 50000 52500
gdp

2.6.4 leastsq

Finally, least-squares allows you to even specify the cost function. With this you can factor in
uncertainties or weights for your data points.

17

[60]:

[61]:

[62]:

[63]:

[64] :

from scipy.optimize import leastsq

def fit_function(x, p):

return x*p[0]+p[1]

def error_function(params) :

return data_eu["refugees"] - fit_function(data_eul["gdp"], params)

res = leastsq(error_function, [0,0])

print(res)

(array ([1.04719896e-06, -3.41693157e-02]), 1)

ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, res[0]))

plt.title("refugees fraction vs. gdp")

plt.show()

refugees

refugees fraction vs. gdp

0.0200 ~

0.0175 ~

0.0150 ~

0.0125 ~

0.0100 ~

0.0075 A

0.0050 ~

0.0025 A

T
35000

T
37500

T
40000

T
42500

18

gdp

T
45000

T
47500

T
50000

T
52500

[65]:

[66] :

[67]:

[68]:

2.6.5 statsmodels

import statsmodels.formula.api as smf

res =

print(res.summary())

smf .ols("refugees ~ gdp", data=data_eu).fit()

OLS Regression Results

Dep. Variable: refugees R-squared: 0.960
Model: OLS Adj. R-squared: 0.941
Method: Least Squares F-statistic: 48.56
Date: Tue, 09 Jul 2024 Prob (F-statistic): 0.0200
Time: 08:17:05 Log-Likelihood: 20.583
No. Observations: 4 AIC: -37.17
Df Residuals: 2 BIC: -38.39
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept -0.0342 0.007 -5.058 0.037 -0.063 -0.005
gdp 1.047e-06 1.5e-07 6.968 0.020 4.01e-07 1.69e-06
Omnibus: nan Durbin-Watson: 3.329
Prob(Omnibus) : nan Jarque-Bera (JB): 0.452
Skew: -0.507 Prob(JB): 0.798
Kurtosis: 1.703 Cond. No. 3.05e+05
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 3.05e+05. This might indicate that there are
strong multicollinearity or other numerical problems.

/usr/1ib/python3/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning:
omni_normtest is not valid with less than 8 observations; 4 samples were given.

warn("omni_normtest is not valid with less than 8 observations; %i "

print(res.params)

Intercept -0.034169
gdp 0.000001
dtype: float64

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, res.params.gdp*x+res.params.Intercept)

19

[70]:

[70]:

[71]:

[71]:

plt.title("refugees fraction vs. gdp")
plt.show()

refugees fraction vs. gdp

0.0200

0.0175 ~

0.0150 ~

0.0125 ~

refugees

0.0100 ~

0.0075 ~

0.0050 A

0.0025

T T T T T T T T
35000 37500 40000 42500 45000 47500 50000 52500
gdp

2.7 Appendix: Selecting from DataFrames
2.7.1 Accessing Rows

Passing a single value to loc returns a Series

frame.loc["a"]

primes 11
fibo 1
0-4 0

Name: a, dtype: int64
Passing a list to loc returns a DataFrame (even if the list contains a single a single value)

frame.loc[["a"]]

primes fibo 0-4
a 11 1 0

20

[72]:

[72]:

[73]:

[73]:

[74] :

[74] :

[75]:

[75]:

[76]:

[76]:

[77]:

[77]:

frame.loc[["a","c"]]

primes fibo 0-4
11 1 0
c 17 2 2

Also slicing works (but includes the upper boundary)

frame.loc["b":"d"]

primes fibo 0-4

13 1 1

c 17 2 2
d 19 3 3

A list of boolean values with n-Rows entries, is considered a mask to select rows

frame.loc[[True,False,True,False,True]]

primes fibo 0-4

11 1 0

c 17 2 2
23 5 4

Instead of a list, a boolean-series can be used.

Rows are matched on the

(frame[["primes"]] > 20 would not work as this returns a frame instead of a series.)

frame.loc[frame["primes"] > 20]

primes fibo 0-4
e 23 5 4

When using a mask, .loc is optional (but recommended to avoid confusion with columns).

frame [frame["primes"] > 20]

primes fibo 0-4
e 23 5 4

Using iloc it is possible to access rows by position as well. (without using the index)

frame.iloc[2:-1]
primes fibo 0-4

c 17 2 2
d 19 3 3

2.7.2 Accessing Columns

The frame is subscripted directly. Again, passing a singel value returns a series.

21

index.

[78]: frame["primes"]

[78]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64
While a list returns a DataFrame

[79]: frame[["primes"]]

[79]: primes
11
13
17
19
23

O Q& 0 T W

[80]: frame[["primes","0-4"]]

[80]1: primes 0-
11
13
17
19
23

® & 0 TP
D W N R OB

Instead of subscripting, the get-method can be used.

[81]: frame.get(["primes","0-4"1)

[81]: primes O-
11
13
17
19
23

® & 0 T W
B W R OB

For single columns, an attribute with the same name exists

[82] : frame.primes

[82]: a 11
b 13
c 17
d 19
e 23

22

Name: primes, dtype: int64
But this fails, if the column-name is not a valid attribute-name

[83]: | # Raises SyntazError
#frame.0-4

For even more options have a look at the pandas-website: https://pandas.pydata.org/pandas-
docs/stable/indexing.html

23

	Pandas
	Basic Data Structures
	Series
	DataFrame

	Refugee Example
	Loading and Accessing Data
	Working with a Single Country
	Removing Unwanted Data
	Excluding Non-Countries
	Excluding Columns

	Loading Additional Files
	Creating the Plot
	Highlighting a Full Region

	Fitting
	Preparations
	polyfit
	curve_fit
	leastsq
	statsmodels

	Appendix: Selecting from DataFrames
	Accessing Rows
	Accessing Columns

