
Nicola Chiapolini, 8 July 2024 1 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Object-Oriented Programming
Scientific Programming with Python

Nicola Chiapolini

University of Zurich
Faculty of Science

8 July 2024

Contributors: Niko Wilbert, Roman Gredig, Christian Elsasser, Anreas Weiden, Jonas Eschle, Nicola Chiapolini

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Nicola Chiapolini, 8 July 2024 2 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Outline

What is OOP?

Fundamental Principles of OOP

Specialities in Python

Science Examples

Design Patterns

Nicola Chiapolini, 8 July 2024 3 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Setting the scene

Object-oriented programming is a programming paradigm.

▶ Imperative programming
▶ Object-oriented
▶ Procedural

▶ Declarative programming
▶ Functional
▶ Logic

Nicola Chiapolini, 8 July 2024 4 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

What is Object-Oriented Programming?

Aim to segment the program into instances of different classes of objects:
▶ Instance variables to describe the state of the object
▶ Methods to model the behaviour of the object

The definition of a class can be considered like a blue print. The program
will create instances of classes and execute methods of these instances.

Nicola Chiapolini, 8 July 2024 5 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Why might OOP be a good idea?

DRY (Don’t repeat yourself):

OOP means to create the functionality of
classes once with the possibility to use them
repeatedly in different programms.
In addition inheritance in OOP allows us to easily
create new classes by extending existing classes
(see below).

KIS (Keep it simple):

The OOP paradigm allows to split the
functionality of programs into the basic building
blocks and the algorithm invoking them. Thus
it creates a natural structure within your code.

At one point the problem to solve becomes so complicated that a single sequence of program instructions is
not sufficient to effectively maintain the code.

Nicola Chiapolini, 8 July 2024 6 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of a class

class Dog:
def __init__(self, color="brown"):

self.color = color

def make_sound(self):
print("Wuff!")

create an instance 'snoopy' of the class Dog
snoopy = Dog()

first argument (self) is this Dog instance
snoopy.make_sound()

change snoopy's color
snoopy.color = "yellow"

▶ Started with class keyword.
▶ Methods defined as functions in class scope

with at least one argument (usually called
self).

▶ Special method __init__ is called when a
new instance is created.

▶ Define your data attributes first in __init__.

Nicola Chiapolini, 8 July 2024 7 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Fundamental Principles of OOP (I)

Encapsulation
▶ Only expose what is necessary to the

outside (public interface).
▶ Implementation details are hidden to provide

abstraction. Abstraction should not leak
implementation details.

▶ Abstraction allows to break up a large
problem into understandable parts.

In Python:
▶ No explicit declaration of variables/methods

as private or public.
▶ Conventionally, private parts start with an

underscore _.
▶ Python works with documentation and

conventions instead of enforcement.

Nicola Chiapolini, 8 July 2024 8 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of Encapsulation

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self.make_sound()

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

def pat(self):
self._change_mood(1)

def beat(self):
self._change_mood(-2)

▶ The author of the class Dog wants you to pat
and beat the dog to change its mood.

▶ Do not use the _mood variable or the
_change_mood method directly.

Nicola Chiapolini, 8 July 2024 9 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Fundamental Principles of OOP (II)

Inheritance
▶ Define new classes as subclasses that are

derived from / inherit / extend a parent
class.

▶ Override parts with specialized behavior and
extend it with additional functionality.

In Python:
▶ Inherit from one or multiple classes (latter

one not recommended!)
▶ Invocation of parent methods with super

function.
▶ All classes are derived from object, even if

this is not specified explicitly.

Nicola Chiapolini, 8 July 2024 10 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of Inheritance

class Mammal:
def __init__(self, color="grey"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self.make_sound()

def make_sound(self):
raise NotImplementedError

def pat(self):
self._change_mood(1)

def beat(self):
self._change_mood(-2)

from mammal import Mammal

class Dog(Mammal):
def __init__(self, color="brown"):

super().__init__(color)

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

▶ super().__init__(color) is the call to the
parent constructor.

▶ super allows also to explicitly access
methods of the parent class.

▶ This is usually done when extending a
method of the parent class.

Nicola Chiapolini, 8 July 2024 11 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Fundamental Principles of OOP (III)

Polymorphism
▶ Different subclasses can be treated like

the parent class, but execute their
specialized behavior.

▶ Example: All mammals can make a sound.
If our object is of type dog, we get a barking
sound.

In Python:
▶ Python is a dynamically typed language:

the type (class) of a variable
is only known when the code runs.

▶ Duck Typing: No need to know class of
object if it provides the required methods:
“If it looks like a duck, swims like a duck, and
quacks like a duck, then it probably is a
duck.” (and we treat it as a duck)

▶ Type checking can be performed via
the isinstance function, but generally prefer
duck typing and polymorphism.

Nicola Chiapolini, 8 July 2024 12 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Example of Polymorphism

from animals import Dog, Cat, Bear

def caress(mammal, number_of_pats):
if isinstance(mammal, Bear):

raise TypeError("Bad Idea!")
for _ in range(number_of_pats):

mammal.pat()

d, c, b = Dog(), Cat(), Bear()
caress(d, 3) # "Wuff!" (3x)
caress(c, 3) # "Purr!" (3x)
caress(b, 3) # raises TypeError

▶ caress works for all objects having a method
pat

▶ special behaviour for bears:
use isinstance(mammal, Bear) to check if
mammal is a bear.

▶ Dynamic typing makes function overloading
like in other languages impossible!

Nicola Chiapolini, 8 July 2024 13 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Magic Methods

class Dog:
def __init__(self, name, color="brown"):

self.name = name
self.color = color
self._mood = 5

def __repr__(self):
return f"{self.name}: {self.color} dog"

snowy = Dog("snowy", "white")
print(snowy) # snowy: white dog

▶ Magic methods (full list here) start and end
with two underscores (“dunder”).

▶ They customise standard Python behavior
(e.g. string representation or operator
definition).

https://docs.python.org/3/reference/datamodel.html#special-method-names

Nicola Chiapolini, 8 July 2024 14 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Property

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

def _get_mood(self):
if self._mood < 0:

return "angry"
else:

return "happy"

mood = property(_get_mood)

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)

▶ property() has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

▶ Access calculated values as if they were
stored data attributes.

▶ Define read-only “data attributes”.
▶ Preprocess value assigned to “data

attribute”. (see later)
▶ Can also use special @-syntax (function

decorator).

Nicola Chiapolini, 8 July 2024 14 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Property

class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

@property
def mood(self):

if self._mood < 0:
return "angry"

else:
return "happy"

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)

▶ property() has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

▶ Access calculated values as if they were
stored data attributes.

▶ Define read-only “data attributes”.
▶ Preprocess value assigned to “data

attribute”. (see later)
▶ Can also use special @-syntax (function

decorator).

Nicola Chiapolini, 8 July 2024 15 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Classmethods

class Dog:
def __init__(self, name, color="brown"):

self.name = name
self.color = color

@classmethod
def from_string(cls, s):

name, *color = s.split(",")
if not color or type(color) != str:

return cls(name)
return cls(name, color)

snowy = Dog.from_string("snowy,white")

▶ A classmethod takes as its first argument a
class instead of an instance of the class. It is
therefore called cls instead of self.

▶ One usecase is to write multiple
constructors for a class, e.g.:
▶ The default __init__ constructor.
▶ One constructor from a serialized string.
▶ One that reads it from a database or file.
▶ . . .

Nicola Chiapolini, 8 July 2024 16 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Python Specialities – Class attributes

class Dog:
breed = "dog"
all_ = set()

def __init__(self, name, color="brown"):
self.name = name
self.color = color
Dog.all_.add(self)

def __repr__(self):
return f"{self.name}: {self.color} {self.breed}"

Dog("snowy", "white")
balto = Dog("balto")
balto.breed = "husky"
print(Dog.all_) # {snowy: white dog, balto: brown husky}

▶ A class can also have attributes that are
shared among all its objects.

▶ If the attribute is modified, all objects will see
this ("class global").

▶ Pitfall assignment: Assigning to an
instance (balto.breed = "husky"), creates
a new instance attribute, hiding the class
one. You need the class to modify the class
attribute (type(balto).breed = "canis")

Nicola Chiapolini, 8 July 2024 17 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Advanced OOP Techniques

There many advanced techniques that we didn’t cover:
▶ Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to understand the

Method Resolution Order (MRO) to understand super.
▶ Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.
▶ Abstract Base Classes: Enforce that derived classes implement particular methods from the base

class.
▶ Metaclasses: (derived from type), their instances are classes.

▶ Great way to dig yourself a hole when you think you are clever.
▶ Try to avoid these, in most cases you would regret it. (KIS)

Nicola Chiapolini, 8 July 2024 18 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Vector

class Vector3D:
def __init__(self, x, y, z):

self.x, self.y, self.z = x, y, z

def __add__(self, other):
return type(self)(self.x + other.x,

self.y + other.y,
self.z + other.z)

@property
def length(self):

return (self.x**2+self.y**2
+self.z**2)**0.5

@length.setter
def length(self, length):

scale = length/self.length
self.x *= scale; self.y *= scale; self.z *= scale

decorators could be replaced by `length = property(....)`
but functions would need distinguishable names

from vector import Vector3D

v1 = Vector3D(0, 1, 2)
v2 = Vector3D(1,-3, 0)
v3 = v1 + v2
print(v3.length) # 3.0
v3.length = 6
print(v3.x, v3.y, v3.z)

▶ Variable type with optimized
behaviour.

▶ Add custom functionality
▶ type(self) in __add__

simplifies inheriting.
▶ @lenght.setter used to mark

property setter

Nicola Chiapolini, 8 July 2024 19 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Dataset

import numpy as np

class Dataset:
mandatory_metadata = ["label", "color", "marker"]
def __init__(self, datafile, **metadata):

for key in self.mandatory_metadata:
if key not in metadata:

raise KeyError("Missing metadata", key)
self.metadata = metadata
self.data = np.loadtxt(datafile, delimiter=",")
self.validate()

def validate(self):
if self.data.shape != (4, 10):

raise ValueError("Bad shape of data, has to be (4, 10).")

@property
def label(self):

return self.metadata["label"]

def peak_row(self):
return self.data.max(axis=1).argmax()

from dataset import Dataset

ds = Dataset("data_0.csv",
label="calibration",
color="r",
marker="+")

print(ds.label)

▶ Store additional info with data.
▶ Validate data on load.
▶ Calculated specific quantities.

Nicola Chiapolini, 8 July 2024 20 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Sensors

from urllib.request import urlopen

class Sensor:
def __init__(self, offset=0, scale_factor=1):

self.offset = offset
self.scale = scale_factor

def get_value(self):
return (self._get_raw() + self.offset) * self.scale

def _get_raw(self):
raise NotImplementedError

class WebSensor(Sensor):
def __init__(self, url, *args, **kwargs):

super().__init__(*args, **kwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)
return float(res.read())

from sensors import WebSensor

sensor = WebSensor(
"https://crbn.ch/sensor", 273
)

print(sensor.get_value())

▶ Store configuration with
functionality.

▶ Allow sensors with different
access methods.

Nicola Chiapolini, 8 July 2024 21 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Science Examples – Value with Uncertainty

class UncertVal:
def __init__(self, value, uncertainty=0):

self.val = value
self.std = uncertainty

def __str__(self):
return f"{self.val} +/- {self.std}"

def add(self, other, corr=0):
variance = (self.std ** 2 + other.std ** 2

+ 2 * self.std * other.std * corr)
return type(self)(self.val + other.val,

variance ** 0.5)

def __add__(self, other):
return self.add(other)

from uncertval import UncertVal

a = UncertVal(2, 0.3)
b = UncertVal(3, 0.4)
print(a + b) # 5 +/- 0.5

▶ Group several values.
▶ Add useful representation.
▶ Define operators respecting

relations between values.

Nicola Chiapolini, 8 July 2024 22 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right:
▶ Rule of three: When you see the same

functionality the third time it might be a good
time to create a class (or function).

▶ Sometimes it helps to sketch with pen and
paper.

▶ Classes and their inheritance often have no
correspondence to the real-world, be
pragmatic instead of perfectionist.

▶ Testability (with unittests) is a good design
criterium.

How design principles can help:
▶ Design principles tell you in an abstract way

what a good design should look like (most
come down to loose coupling).

▶ Design Patterns are concrete solutions for
reoccurring problems.

Nicola Chiapolini, 8 July 2024 23 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Some Design Principles

Scope of classes:
▶ One class = one single clearly defined

responsibility.
▶ Favor composition over inheritance.

Inheritance is not primarily intended for
code reuse, its main selling point is
polymorphism. “Do I want to use these
subclasses interchangeably?”

▶ Identify the aspects of your application
that vary and separate them from what
stays the same.
Classes should be “open for extension,
closed for modification” (Open-Closed
Principle).

How to design (programming) interfaces:
▶ Principle of least knowledge.

Each unit should have only limited
knowledge about other units. Only talk to
your immediate friends.

▶ Minimize the surface area of the interface.
▶ Program to an interface, not an

implementation. Do not depend upon
concrete classes.

Nicola Chiapolini, 8 July 2024 24 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Design Patterns

Purpose & background:
▶ Idea of concrete design approach for

recurring problems.
▶ Closely related to the rise of the traditional

OOP languages C++ and Java.
▶ More important for compiled languages

(Open-Closed principle stricter!) and those
with stronger enforcement of encapsulation.

Examples:
▶ Decorator pattern
▶ Strategy pattern
▶ Factory pattern
▶ . . .

A comprehensive list can be found here.

https://en.wikipedia.org/wiki/Software_design_pattern

Nicola Chiapolini, 8 July 2024 25 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern

Nicola Chiapolini, 8 July 2024 26 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – Motivation

Challenge:
▶ How to modify the behaviour of an individual

object . . .
▶ . . . and allowing for multiple modifications.

Example: Implement a range of products of a
coffee house chain

But what about the beloved add-ons?

(Do not confuse the decorator pattern with
function decorators!)

class Beverage:
imagine some attributes like
temperature, amount left,...
_name = "beverage"
_cost = 0.00

def __str__(self):
return self._name

@property
def cost(self):

return self._cost

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class Tea(Beverage):
_name = "tea"
...

Nicola Chiapolini, 8 July 2024 27 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – First try

Solution:
▶ Implementation via subclasses

Issue: Number of subclasses explodes to allow
for multiple modifications (e.g.
CoffeeWithMilkAndSugar).

class Coffee(Beverage):
_name = "coffee"
_cost = 3.00

class CoffeeWithMilk(Coffee):
_name = "coffee with milk"
_cost = 3.30

class CoffeeWithSugar(Coffee):
_name = "coffee with sugar"
...

Nicola Chiapolini, 8 July 2024 28 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – Second try

Solution:
▶ Implementation with switches

Issue: No additional add-ons implementable
without changing the class (violation of the
open-close principle!).

class Beverage:
_name = "beverage"
_cost = 0.00

def __init__(self, milk=False, sugar=False):
self._milk = milk
self._sugar = sugar

def __str__(self):
desc = self._name
if self._milk:

desc += ", with milk"
if self._sugar:

desc += ", with sugar"
return desc

@property
def cost(self):

cost = self._cost
if self._milk:

cost += 0.30
if self._sugar:

cost += 0.20
return cost

Nicola Chiapolini, 8 July 2024 29 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Decorator Pattern – Implementation

Solution:
▶ Create a class that wraps a beverage and

behaves like a beverage itself. (i.e.
implements the beverage interface)

▶ Possibility to create a chain of decorators.
▶ Composition solves the problem.
▶ Downside: Need to implement all functions

of beverage even if they do not need to be
changed.

class Milk:
def __init__(self, beverage):

self.base = beverage

def __str__(self):
return f"{self.base}, with milk"

@property
def cost(self):

return self.base.cost + 0.30

coffee_with_milk = Milk(Coffee())

Nicola Chiapolini, 8 July 2024 30 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern

Nicola Chiapolini, 8 July 2024 31 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Motivation (I)

Let’s implement a duck . . .
class Duck:

def __init__(self):
for simplicity this example
class is stateless

def quack(self):
print("Quack!")

def display(self):
print("Boring looking duck.")

def take_off(self):
print("Run fast, flap wings.")

def fly_to(self, destination):
print("Fly to", destination)

def land(self):
print("Extend legs, touch down.")

Nicola Chiapolini, 8 July 2024 32 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Motivation (II)

. . . and different types of ducks!

Oh, no! The rubber duck should not
fly! We need to overwrite all the
methods about flying.
▶ What if we want to introduce a

DecoyDuck as well?
▶ What if a normal duck suffers a

broken wing?

⇒ It makes more sense to abstract
the flying behaviour.

class RedheadDuck(Duck):
def display(self):

print("Duck with a read head.")

class RubberDuck(Duck):
def quack(self):

print("Squeak!")

def display(self):
print("Small yellow rubber duck.")

Nicola Chiapolini, 8 July 2024 33 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Implementation (I)

▶ Create a class to describe the
flying behaviour (flying
strategy). . .

▶ . . . give Duck an instance of it . . .
▶ . . . and handle all the flying stuff

via this instance

class FlyingBehavior:
def take_off(self):

print("Run fast, flap wings.")
def fly_to(self, destination):

print("Fly to", destination)
def land(self):

print("Extend legs, touch down.")

class Duck:
def __init__(self):

self.flying_behavior = FlyingBehavior()
def take_off(self):

self.flying_behavior.take_off()
def fly_to(self, destination):

self.flying_behavior.fly_to(destination)
def land(self):

self.flying_behavior.land()
display, quack as before...

Nicola Chiapolini, 8 July 2024 34 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Strategy Pattern – Implementation (II)

▶ Other example of composition
over inheritance.

▶ Encapsulation of function
implementation in the strategy
object.

▶ Useful pattern to e.g. define
optimisation algorithm at runtime.

class NonFlyingBehavior(FlyingBehavior):
def take_off(self):

print("It's not working :-(")
def fly_to(self, destination):

raise Exception("I'm not flying.")
def land(self):

print("That won't be necessary.")

class RubberDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior()
def quack(self):

print("Squeak!")
def display(self):

print("Small yellow rubber duck.")

class DecoyDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior()
different implementation for display/quack

Nicola Chiapolini, 8 July 2024 35 / 35

What is OOP? Fundamental Principles of OOP Specialities in Python Science Examples Design Patterns

Take-aways

▶ Object-oriented programming offers a powerful pradigm to structure your code.
▶ Inheritance, design principles and patterns allow to avoid repetitions (DRY).
▶ But do not overcomplicate things and always ask yourself if applying a particular functionality makes

sense in the given context!

	What is OOP?
	Fundamental Principles of OOP
	Specialities in Python
	Science Examples
	Design Patterns

