Nicola Chiapolini, 8 July 2024

Object-Oriented Programming
Scientific Programming with Python
Nicola Chiapolini

University of Zurich
Faculty of Science

8 July 2024

Contributors: Niko Wilbert, Roman Gredig, Christian Elsasser, Anreas Weiden, Jonas Eschle, Nicola Chiapolini

@ @ This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Outline

What is OOP?

Fundamental Principles of OOP
Specialities in Python

Science Examples

Design Patterns

Nicola Chiapolini, 8 July 2024

__winatis0OP? _______Fundamertal Principles ol OOP __________Specillies n Pylton __________Science Examples______Design Paterns _
Setting the scene

Object-oriented programming is a programming paradigm.

» Imperative programming
» Object-oriented
»> Procedural

» Declarative programming

» Functional
> Logic

Nicola Chiapolini, 8 July 2024

What is Object-Oriented Programming?

4/35

Aim to segment the program into instances of different classes of objects:
» Instance variables to describe the state of the object
» Methods to model the behaviour of the object

The definition of a class can be considered like a blue print. The program
will create instances of classes and execute methods of these instances.

Nicola Chiapolini, 8 July 2024 5/35

Why might OOP be a good idea?

DRY (Don'’t repeat yourself): KIS (Keep it simple):

OOP means to create the functionality of The OOP paradigm allows to split the

classes once with the possibility to use them functionality of programs into the basic building
repeatedly in different programms. blocks and the algorithm invoking them. Thus
In addition inheritance in OOP allows us to easily it creates a natural structure within your code.
create new classes by extending existing classes

(see below).

At one point the problem to solve becomes so complicated that a single sequence of program instructions is
not sufficient to effectively maintain the code.

Nicola Chiapolini, 8 July 2024

Example of a class

class Dog: » Started with class keyword.
def ;;;‘fuz;iéjif;oiziwz"b“’“’“”’: > Methods defined as functions in class scope
with at least one argument (usually called
def make_sound(self): se]_f)_

print ("Wuff!") . .
» Special method __init__ is called when a
create an instance 'snoopy' of the class Dog new instance is created.
snoopy = Dog()
» Define your data attributes first in __init__.
first argument (self) is this Dog instance
snoopy .make_sound ()

change snoopy's color
snoopy.color = "yellow"

Nicola Chiapolini, 8 July 2024 7135

Fundamental Principles of OOP (I)

Encapsulation In Python:
» Only expose what is necessary to the » No explicit declaration of variables/methods
outside (public interface). as private or public.
» Implementation details are hidden to provide » Conventionally, private parts start with an
abstraction. Abstraction should not leak underscore _.
implementation details. » Python works with documentation and
» Abstraction allows to break up a large conventions instead of enforcement.

problem into understandable parts.

Nicola Chiapolini, 8 July 2024

Fundamental Principles of OOP

Example of Encapsulation

class Dog:

def

__init__(self, color="brown"):

self.color = color
self._mood = 5

_change_mood(self, change):
self._mood += change
self .make_sound()

make_sound(self):
if self._mood < O:
print("Grrrr!")
else:
print ("Wuff!")

pat(self):
self._change_mood (1)

beat (self):
self._change_mood(-2)

The author of the class Dog wants you to pat
and beat the dog to change its mood.

Do not use the _mood variable or the
_change_mood method directly.

Fundamental Principles of OOP

Fundamental Principles of OOP (Il)

Nicola Chiapolini, 8 July 2024

Inheritance In Python:
» Define new classes as subclasses that are » Inherit from one or multiple classes (latter
derived from / inherit / extend a parent one not recommended!)
class. > Invocation of parent methods with super
» Override parts with specialized behavior and function.
extend it with additional functionality. > All classes are derived from object, even if

this is not specified explicitly.

Nicola Chiapolini, 8 July 2024 35

Fundamental Principles of OOP

Example of Inheritance

class Mammal: from mammal import Mammal
def __init__(self, color="grey"):
self.color = color class Dog(Mammal) :
self._mood = 5 def __init__(self, color="brown"):
super () .__init__(color)
def _change_mood(self, change):
self._mood += change def make_sound(self):
self.make_sound() if self._mood < O:
print ("Grrrr!")
def make_sound(self): else:
raise NotImplementedError print ("Wuff!")
def pat(self): » super().__init__(color) is the call to the
self._change_mood(1) parent constructor.
def beat(self): > super allows also to explicitly access

self._changemood(-2) methods of the parent class.

» This is usually done when extending a
method of the parent class.

Nicola Chiapolini, 8 July 2024 11/35

Fundamental Principles of OOP (lll)

Polymorphism In Python:
» Different subclasses can be treated like » Python is a dynamically typed language:
the parent class, but execute their the type (class) of a variable
specialized behavior. is only known when the code runs.
» Example: All mammals can make a sound. » Duck Typing: No need to know class of
If our object is of type dog, we get a barking object if it provides the required methods:
sound. “If it looks like a duck, swims like a duck, and

quacks like a duck, then it probably is a
duck.” (and we treat it as a duck)

» Type checking can be performed via
the isinstance function, but generally prefer
duck typing and polymorphism.

Nicola Chiapolini, 8 July 2024 1

Example of Polymorphism

from animals import Dog, Cat, Bear > caress works for all objects having a method
pat
def caress(mammal, number_of_pats): . .
if isinstance(mammal, Bear): > SpeCIaI behaviour for bears:
raise TypeError("Bad Idea!") use isinstance(mammal, Bear) to check if

for _ in range(number_of_pats): i
mammal . pat () mammal is a bear.
d b = Dog(), Cat(), Bear() » Dynamic typing makes function overloading
, C, = Dog(), Ca , Bear

caress(d, 3) # "Wuff!" (3z) like in other languages impossible!

caress(c, 3) # "Purr!" (3z)
caress(b, 3) # raises TypeError

Nicola Chiapolini, 8 July 2024 1
Specialities in Python

Python Specialities — Magic Methods

» Magic methods (full list here) start and end

class Dog:

def __init__(self, name, color="brown"): with two underscores (“dunder”).
self .name = name . .
self.color = color » They customise standard Python behavior
self._mood = 5 (e.g. string representation or operator
definition).

def __repr__(self):
return f"{self.name}: {self.color} dog"

snowy = Dog("snowy", "white")
print(snowy) # snowy: white dog

https://docs.python.org/3/reference/datamodel.html#special-method-names

Nicola Chiapolini, 8 July 2024 1

Python Specialities — Property

class Dog: > property() has upto four arguments:
def __init__(self, color="brown"): 1. Getter
self.color = color 2. Setter

self. _mood = 5 3. Deleter

4. Documentation string
def _get_mood(self):

if self._mood < 0: » Access calculated values as if they were
oo S Tangryt stored data attributes.
return "happy" » Define read-only “data attributes”.
mood = property(_get_mood) » Preprocess value assigned to “data

attribute”. (see later)

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print ("Snowy is", snowy.mood)

Nicola Chiapolini, 8 July 2024 1

Specialities in Python

Python Specialities — Property

class Dog:
def __init__(self, color="brown"):
self.color = color
self._mood = 5

@property
def mood(self):
if self._mood < O:
return "angry"
else:
return "happy"

create an instance 'snowy' of the class Dog
snowy = Dog("white")
print ("Snowy is", snowy.mood)

property () has upto four arguments:

1. Getter

2. Setter

3. Deleter

4. Documentation string
Access calculated values as if they were
stored data attributes.

Define read-only “data attributes”.

Preprocess value assigned to “data
attribute”. (see later)

Can also use special @-syntax (function
decorator).

Nicola Chiapolini, 8 July 2024

Specialities in Python

Python Specialities — Classmethods

» A classmethod takes as its first argument a

class Dog:
def __init__(self, name, color="brown"): class instead of an instance of the class. It is
self.name = name therefore called c1s instead of self.
self.color = color i i i
» One usecase is to write multiple
@classmethod constructors for a class, e.g.:
def from_string(cls, s): > The default __init__ constructor.

name, *color = s.split(",")

if not color or type(color) != str:
return cls(name)

return cls(name, color)

» One constructor from a serialized string.

> One that reads it from a database or file.
» e

snowy = Dog.from_string("snowy,white")

Nicola Chiapolini, 8 July 2024 1

Python Specialities — Class attributes

» A class can also have attributes that are

class Dog: X X
breed = "dog" shared among all its objects.
all_ = set()
» |f the attribute is modified, all objects will see
def __init__(self, name, color="brown"): this ("ClaSS g|0ba|")_
self .name = name
self.color = color » Pitfall assignment: Assigning to an
Dog.all_.add(self) instance (balto.breed = "husky"), creates

4 . a new instance attribute, hiding the class
ef __repr__(self): .
return f"{self.name}: {self.color} {self.breed}" ONE. You need the class to modify the class
attribute (type(balto) .breed = "canis")
Dog("snowy", "white")
balto = Dog("balto")
balto.breed = "husky"
print(Dog.all_) # {snowy: white dog, balto: brown husky}

Nicola Chiapolini, 8 July 2024 17/35

Advanced OOP Techniques

There many advanced techniques that we didn’t cover:

» Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to understand the
Method Resolution Order (MRO) to understand super.

» Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.

» Abstract Base Classes: Enforce that derived classes implement particular methods from the base
class.

» Metaclasses: (derived from type), their instances are classes.

» Great way to dig yourself a hole when you think you are clever.
> Try to avoid these, in most cases you would regret it. (KIS)

Nicola Chiapolini, 8 July 2024

Science Examples

Science Examples — Vector

class Vector3D:
def __init__(self, x, y, 2):
self.x, self.y, self.z = x, y, z

def __add__(self, other):
return type(self)(self.x + other.x,
self.y + other.y,
self.z + other.z)

@property
def length(self):
return (self.x**2+self.y**2
+self .z**2)**x0.5

Q@length.setter
def length(self, length):
scale = length/self.length
self.x *= scale; self.y *= scale; self.z *= scale

decorators could be replaced by “length = property(....

but functions would need distinguishable names

from vector import Vector3D

vl = Vector3D(0, 1, 2)
v2 = Vector3D(1,-3, 0)
v3 = vl + v2
print(v3.length) # 3.0
v3.length = 6
print(v3.x, v3.y, v3.z)

» Variable type with optimized
behaviour.
» Add custom functionality

> type(self) in __add_
simplifies inheriting.

> Q@lenght.setter used to mark
property setter

Nicola Chiapolini, 8 July 2024 35

Science Examples — Dataset

import numpy as np from dataset import Dataset
class Dataset: ds = Dataset("data_0O.csv",
mandatory_metadata = ["label", "color", "marker"] label="calibration",
def __init__(self, datafile, **metadata): color="r",
for key in self.mandatory_metadata: marker="+")
if key not in metadata: print(ds.label)
raise KeyError("Missing metadata", key)
self.metadata = metadata » Store additional info with data.
self.data = np.loadtxt(datafile, delimiter=",") i
self.validate() » Validate data on load.
def validate(self): > Calculated specific quantities.

if self.data.shape != (4, 10):
raise ValueError("Bad shape of data, has to be (4, 10).")

Q@property
def label(self):
return self.metadata["label"]

def peak_row(self):
return self.data.max(axis=1).argmax()

35

Nicola Chiapolini, 8 July 2024
Science Examples

Science Examples — Sensors

from urllib.request import urlopen from sensors import WebSensor

sensor = WebSensor(

class Sensor:
"https://crbn.ch/sensor", 273

def __init__(self, offset=0, scale_factor=1):
self.offset = offset)
self.scale = scale_factor print (sensor.get_value())

def get_value(self): » Store configuration with
return (self._get_raw() + self.offset) * self.scale functionality

def _get_raw(self): » Allow sensors with different
raise NotImplementedError access methods

class WebSensor(Sensor) :
def __init__(self, url, *args, **kwargs):
super().__init__(xargs, *xkwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)
return float(res.read())

Nicola Chiapolini, 8 July 2024 21/35

Science Examples

Science Examples — Value with Uncertainty

class UncertVal: from uncertval import UncertVal
def __init__(self, value, uncertainty=0):
self.val = value a = UncertVal(2, 0.3)
self.std = uncertainty b = UncertVal(3, 0.4)

print(a + b) # 5 +/- 0.5
def __str__(self):

return f"{self.val} +/- {self.std}" » Group several values.
def add(self, other, corr=0): » Add useful representation.
variance = (self.std ** 2 + other.std ** 2 . .
+ 2 * self.std * other.std * corr) > Defnje operators respectlng
return type(self) (self.val + other.val, relations between values.

variance ** 0.5)

def __add__(self, other):
return self.add(other)

Nicola Chiapolini, 8 July 2024 22/35

Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right: How design principles can help:

» Rule of three: When you see the same » Design principles tell you in an abstract way
functionality the third time it might be a good what a good design should look like (most
time to create a class (or function). come down to loose coupling).

» Sometimes it helps to sketch with pen and » Design Patterns are concrete solutions for
paper. reoccurring problems.

» Classes and their inheritance often have no
correspondence to the real-world, be
pragmatic instead of perfectionist.

» Testability (with unittests) is a good design
criterium.

Nicola Chiapolini, 8 July 2024 23/35

Design Patterns

Some Design Principles

Scope of classes: How to design (programming) interfaces:

» One class = one single clearly defined > Principle of least knowledge.
responsibility. Each unit should have only limited

> Favor composition over inheritance. knowledge gbout .other units. Only talk to
Inheritance is not primarily intended for your immediate friends.
code reuse, its main selling point is » Minimize the surface area of the interface.
polymorphism. “Do | want to use these > Program to an interface, not an
subclasses interchangeably? implementation. Do not depend upon

» ldentify the aspects of your application concrete classes.

that vary and separate them from what
stays the same.

Classes should be “open for extension,
closed for modification” (Open-Closed
Principle).

Nicola Chiapolini, 8 July 2024

Design Patterns

Purpose & background:

» |dea of concrete design approach for
recurring problems.

» Closely related to the rise of the traditional
OOP languages C++ and Java.

» More important for compiled languages
(Open-Closed principle stricter!) and those

with stronger enforcement of encapsulation.

Examples:
» Decorator pattern
» Strategy pattern
» Factory pattern
>

A comprehensive list can be found here.

A Brain-Friendly Guide
Desion Patterns Head First
Design Patterns

f Reusable
Ot ented Software

oY

OReILLY"

24/35

Design Patterns

https://en.wikipedia.org/wiki/Software_design_pattern

Nicola Chiapolini, 8 July 2024 25/35

Design Patterns

Decorator Pattern

Nicola Chiapolini, 8 July 2024 2
Design Patterns

Decorator Pattern — Motivation

Challenge:
. . o class Beverage:
» How to modify the behaviour of an individual # imagine some attributes like
ObjeCt . # tempe'r‘f.tu'r‘e, amfunt left,...
_name = "beverage
» ...and allowing for multiple modifications. —cost = 0.00
Example: Implement a range of products of a def __str__(self):

return self._name

coffee house chain

But what about the beloved add-ons? CGproperty
def cost(self):

return self._cost
class Coffee(Beverage):

(Do not confuse the decorator pattern with -name = "coffee"

. _cost = 3.00
function decorators!) cos
class Tea(Beverage):
_name = "tea"

Nicola Chiapolini, 8 July 2024 2

Decorator Pattern — First try

Solution:
. . class Coffee(Beverage):
» Implementation via subclasses _name = "coffee"
_cost = 3.00
Issue: Number of subclasses explodes to allow
for multiple modifications (e.g. class CoffeeWithMilk(Coffee):
CoffeeWithMilkAndSugar). -name - cottes with milk!

class CoffeeWithSugar(Coffee):
_name = "coffee with sugar"

Nicola Chiapolini, 8 July 2024 28/35

Decorator Pattern — Second try

Solution:
class Beverage:

» Implementation with switches _name = "beverage"
e . _cost = 0.00

Issue: No additional add-ons implementable
without changing the class (violation of the def __init__(self, milk=False, sugar=False):

. self._milk = milk
open-close principle!). self. sugar = sugar

def __str__(self):

desc = self._name
if self._milk:

desc += ", with milk"
if self._sugar:
desc += ", with sugar"

return desc

Q@property
def cost(self):
cost = self._cost
if self._milk:
cost += 0.30
if self._sugar:
cost += 0.20
return cost

Nicola Chiapolini, 8 July 2024 2

Decorator Pattern — Implementation

Solution:
class Milk:

» Create a class that wraps a beverage and def __init__(self, beverage):
behaves like a beverage itself. (i.e. self.base = beverage
implements the beverage interface) def __str._(self):

» Possibility to create a chain of decorators. return f"{self.base}, with milk"

» Composition solves the problem. @property

X . . def cost(self):
» Downside: Need to implement all functions return self.base.cost + 0.30

of beverage even if they do not need to be

coffee_with_milk = Milk(Coffee())
changed.

Nicola Chiapolini, 8 July 2024 30/35

Design Patterns

Strategy Pattern

Nicola Chiapolini, 8 July 2024 31/35

Design Patterns

Strategy Pattern — Motivation (1)

Let’s implement a duck ...

class Duck:
def __init__(self):
for simplicity this exzample
class 1s stateless
def quack(self):
print ("Quack!")

def display(self):
print ("Boring looking duck.")

def take_off(self):
print("Run fast, flap wings.")

def fly_to(self, destination):
print("Fly to", destination)

def land(self):
print ("Extend legs, touch down.")

Nicola Chiapolini, 8 July 2024 32/35

Strategy Pattern — Motivation (I1)

...and different types of ducks!
class RedheadDuck(Duck) :

Oh, no! The rubber duck should not det diépﬁlygse}l{ﬂ . 4 nend)
. rint ("Duck wi a rea ead."
fly! We need to overwrite all the P
methods about fIylng class RubberDuck(Duck) :
. . def quack(self):
» What if we want to introduce a print ("Squeak!")

DecoyDuck as well?
. def display(self):
» What if a normal duck suffers a print("Small yellow rubber duck.")

broken wing?

= It makes more sense to abstract
the flying behaviour.

Nicola Chiapolini, 8 July 2024 33/35

Strategy Pattern — Implementation (1)

» Create a class to describe the

class FlyingBehavior:

flying behaviour (flying def take_off(self):
print("Run fast, flap wings.")
StrateQY)' nr def fly_to(self, destination):
» ...give Duck an instance of it . .. print("Fly to", destination)
. def land(self):
» ...and handle all the flying stuff print ("Extend legs, touch down.")

via this instance

class Duck:
def __init__(self):
self.flying_behavior = FlyingBehavior()
def take_off(self):
self.flying_behavior.take_off ()
def fly_to(self, destination):
self.flying_behavior.fly_to(destination)
def land(self):
self.flying_behavior.land()
display, quack as before...

Nicola Chiapolini, 8 July 2024

Design Patterns

Strategy Pattern — Implementation (I1)

» Other example of composition
over inheritance.

» Encapsulation of function
implementation in the strategy
object.

» Useful pattern to e.g. define
optimisation algorithm at runtime.

class NonFlyingBehavior (FlyingBehavior) :
def take_off(self):
print("It's not working :-(")
def fly_to(self, destination):
raise Exception("I'm not flying.")
def land(self):
print ("That won't be necessary.")

class RubberDuck(Duck) :
def __init__(self):
self.flying_behavior = NonFlyingBehavior ()
def quack(self):
print ("Squeak!")
def display(self):
print("Small yellow rubber duck.")

class DecoyDuck(Duck) :
def __init__(self):
self.flying_behavior = NonFlyingBehavior ()
different implementation for display/quack

Nicola Chiapolini, 8 July 2024 35/35
Design Patterns

Take-aways

» Object-oriented programming offers a powerful pradigm to structure your code.
» Inheritance, design principles and patterns allow to avoid repetitions (DRY).

» But do not overcomplicate things and always ask yourself if applying a particular functionality makes
sense in the given context!

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BADCAN 1T BE?

OR USE ONE LITTLE gpto main-sub%;
GO, INSTEAD

?)ﬁ *COMPILE*

	What is OOP?
	Fundamental Principles of OOP
	Specialities in Python
	Science Examples
	Design Patterns

