Hardware-assisted speed-up techniques

Scientific Programming with Python

Roman Gredig

Tl ™) Universitat
) Zurich™

Overview

e Motivation

e The Data Access Issue

o Why are modern CPUs starving?
o Caches and the hierarchical memory model

o Techniques for fighting data starvations

e High Performance Libraries

Based on the lecture slides of
Francesc Alted

"Advanced Scientific Programming in Python"

This work is licensed under the
Creative Commons Attribution-ShareAlike 3.0 License

https://creativecommons.org/licenses/by-sa/3.0/

Motivation: Computing a Polynomial

We want to compute the polynomial:
y = 0.25x3 + 0.75x% = 1.5x = 2
in the range [-1,1], with granularity of 10 million points on the x-axis

... and we want to do that as FAST as possible ...

use NumPy

NumPy is a powerful package that let you perform calculations with Python,

but at C speed:
(see previous talks)

numpy np
10*1000*1000

np.linspace (-1, 1,

S 29FRWH*F &+ TE

That takes around 0.86 sec on our machine (Intel Core i5-3380M CPU @ 2.90GHz).
Hint: use %timeit in ipython for easy benchmarking

How to make it faster?

"Quick & Dirty" Approach: Parallelize

e The problem of computing a polynomial is “embarrassingly” parallelizable:
just divide the domain to compute in N chunks and evaluate the expression for each chunk.

e This can be easily implemented in Python by, for example, using the multiprocessing module.
See poly-mp.py script.

e Using 2 cores, the 0.86 sec is slowed down to 0.88 sec! WTF?

e \Why do | even buy a multi-core computer?

Another (Much Easier) Approach: Factorize

e The NumPy expression:

(l) v X X X

can be rewritten as
(”) y ((X) *x)

e With this, the time goes from 0.86 sec to 0.107 sec, which is much faster (8x) than using two
processors with the multiprocessing approach (0.88 sec)

Give optimization a chance before parallelizing!

Numexpr Can Compute Expressions \Way Faster

e Numexpr is a just-in-time (JIT) compiler, based on NumPYy, that optimizes the evaluation of complex
expressions. Its use is easy:

import numpy as np
import numexpr as ne
0*1000*1000

X = np.linspace(-1, 1, N)

ne.set num threads (1)

y = ne.evaluate('.25*x**3 +

e That takes around 0.059 sec to complete,
which is 15x faster than the original NumPy expression (0.86 sec).

Fine-tune Expressions with Numexpr

e Numexpr is also sensible to computer-friendly expressions like:

e Numexpr takes 0.046 sec for the above
(0.059 sec were needed for the original expression, that’'s 28% faster)

Using Multiple Threads with Numexpr
e Numexpr supports multi threading:

import numpy as np
import numexpr as
N

X np.linspace (-1

ne.set num threads

y = ne.evaluate (' ((.25*x

e That takes around 0.029 sec to complete,
which is 60% faster than using a single processor (0.046 sec).

e Parallelization can make sense if you do it the right way.

Summary and Open Questions

Parallel Speedup

NumPy (1)

NumPy (II)

Numexpr (I)

Numexpr (lI)

e If all the approaches perform the same computations, all in C space, why the wild differences in
performance?

e \Why do the different approaches not scale similarly in parallel mode?

10

A First Answer:
Power Expansion and Performance

Numexpr expands the expression:

i.e. no need to use the expensive pow ()

11

One (Important) Remaining Question

Why can numexpr execute this expression:

more than 2x faster than NumPy?

12

One (Important) Remaining Question

Why can numexpr execute this expression:

more than 2x faster than NumPy?

By making a more efficient use of the memory resource.

13

Quote Back in 1996

Across the industry, today’s chips are largely able to execute code faster than we can feed them with
instructions and data. There are no longer performance bottlenecks in the floating-point multiplier or in having
only a single integer unit. The real design action is in memory subsystems, caches, buses, bandwidth, and
latency.”

“Over the coming decade, memory subsystem design will be the only important design issue for
microprocessors.”

— Richard Sites, after his article “It's The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

14

CPU vs. Memory Cycle Trend

CPU speed increases much faster than memory speed — performance gap
Meanwhile several order of magnitudes difference

Book in 2009:

% MORGAN& CLAYPOOL PUBLISHERS

The Memory System

You Can’t Avoid I,
You Can't Ignore It,
You Can’t Fake It

Bruce Jacob

SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

15

The CPU Starvation Problem

e Memory latency is much slower than processors and is an essential bottleneck.

e Memory throughput is improving at a better rate than memory latency, but it is also much slower than
processors

The result is that CPUs in our current computers are suffering from a serious starvation data problem:

They could consume (much!) more data than the system can possibly deliver.

16

What Is the Industry Doing to Alleviate CPU Starvation?

e They are improving memory throughput: cheaper to implement (more data is transmitted on each clock
cycle).

e They are adding caches in the CPU die (i.e. the “chip”).

e Different types of memory
o regular memory: dynamic RAM (DRAM)
m cheap
m dense
m needs periodic refresh
o cache memory: static RAM (SRAM)
more complex
no refresh needed
increased power consumption at faster access

|
|
|
[I\ we are not talking about file access cache here!

17

Why Is a Cache Useful?

e Caches are closer to the processor (normally in the same die), so both the latency and throughput are
improved.

e However: the faster they run the smaller they must be.
e They are effective mainly in a couple of scenarios:
o Time locality: when the dataset is reused.

o Spatial locality: when the dataset is accessed sequentially

18

Time Locality

Parts of the dataset are reused

Memory (C array)

19

Space Locality

Dataset is accessed sequentially

Good!

Q|0|®|®|Linel
QO @® ®|Line?2

Bad

Memory (C array)

20

The Hierarchical Memory Model

e Introduced by industry to cope with CPU data starvation problems.
e |t consists in having several layers of memory with different capabilities:

o Lower levels (i.e. closer to the CPU) have higher speed, but reduced capacity. Best suited for
performing computations.

o Higher levels have reduced speed, but higher capacity. Best suited for storage purposes.

21

The Primordial Hierarchical Memory Model

Two level hierarchy:

Disk

capacity

Memory

CPU

paads

22

The 2000’s Hierarchical Memory Model

Four level hierarchy:

capacity

Disk

Main Memory

Level 2 Cache \

Level 1 Cache

CPU

paads

23

The Current Hierarchical Memory Model

Six level (or more) hierarchy:

capacity

Mechanical Disk (HDD)

Solid State Disk (SSD)

Main Memory

/ Level 3 Cache \
|

Level 2 Cache

Level 1 Cache

_ CPU %

paads

24

The Current Hierarchical Memory Model

this computer: from 2016

Machine (16GB total)

Package L#0

NUMANode L#0Q P#@ (16GB)
L3 (4096KB)
L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB)
Core L#0 Core L#1
PU L#0 PU L#2
P#0 P#1
PU L#1 PU L#3
P#2 P#3

tools like 1stopo or 1scpu on linux show detailed
information about CPUs and cache

25

https://www.open-mpi.org/projects/hwloc/
https://github.com/util-linux/util-linux

The Current Hierarchical Memory Model

my current work laptop: from 2022

Machine (15GB total)

Package L#0
NUMANode L#0 P#0 (15GB)
L3 (12MB)
L2 (1280KB) | | L2 (1280KB) | | L2 (2048KB) L2 (2048KB)
L1d (48KB) L1d (48KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB) L1i (64KB) L1li (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7 Core L#8 Core L#9
Gk o PN .
: PUL#0: : PUL#2: PU L#4 PU L#5 PU L#6 PU L#7 PU L#8 PU L#9 PU L#10 PU L#11
: P#0 . P#2 P#4 P#5 P#6 P#7 P#8 P#9 P#10 P#11
P puL#ii| |i puL#3i
i OP#1 i| |i P#3 i

26

Once Upon ATime ...

e Inthe 1970s and 1980s many computational scientists had to learn assembly language in order to
squeeze all the performance out of their processors.

e ‘“written in assembler” used to be an advertisement.

e Inthe good old days, the processor was the key bottleneck.

27

Nowadays ...

e Every computer scientist must acquire a good knowledge of the hierarchical memory model (and its
implications) if they want their applications to run at a decent speed (i.e. they do not want their CPUs to
starve too much).

e Memory organization has now become the key factor for optimizing.
e You don't need to know how to put data in the cache, but help the OS to do it efficiently.

e Also high-level languages can be fast.

28

https://xkcd.com/378

The Blocking Technique

When you have to access memory, get a contiguous block that fits in the CPU cache, operate upon it or reuse
it as much as possible, then write the block back to memory:

C = A <oper>B

Dataset A

Cache

CPU Dataset C

Dataset B

29

Understand NumPy Memory Layout

With a being a squared array (4000x4000):

Good!

Summing up column-wise:

Line 1
Line 2

al:,1].sum()

Bad

Summing up row-wise: more than 100x faster (!)
Memory (C array)

NumPy arrays are ordered row-wise (C convention) by default

When would a[1, :].sum() be slowerthan a[:,1] .sum()?

30

Vectorize Your Code

Naive matrix-matrix multiplication: 1264 sec (1000x1000)

def dot naive(a,b):

= np.zeros ((nrows, ncols), dtype='£f8")
for row in range (nrows) :
for col in range (ncols) :
for 1 in range (nrows) :

cl[row,col] += a[row,1] * b[i,col]

Vectorized matrix-matrix multiplication: 20 sec (64x faster)

def dot(a,b):
c = np.empty ((nrows, ncols), dtype='£f8")

for row in range (nrows) :

for col in range (ncols) :

c[row, col] = np.sum(al[row] * b[:,col])

recturn cC

31

Interlude: Resolving More Open Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

25'%M3 + 752 - 1.5% - 2 ((25* + .75)% - LE*X = 2

NumPy vs Numexpr (1 thread)

B NumPy
B Numexpr

32

Interlude: Resolving More Open Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

25'%M3 + 752 - 1.5% - 2 ((25* + .75)% - LE*X = 2

NumPy vs Numexpr (1 thread)

B NumPy
B Numexpr

33

Interlude: Resolving More Open Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

25'%M3 + 752 - 1.5% - 2 ((25* + .75)% - LE*X = 2

NumPy vs Numexpr (1 thread)

B NumPy
B Numexpr

34

Interlude: Resolving More Open Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

((25* + .75)% - LE*X = 2

253+ 79X M2 - 1.5 -2

NumPy vs Numexpr (1 thread)

B NumPy
B Numexpr

35

NumPy And Temporaries

Computing "a*b+c" with NumPy. Temporaries goes to memory.

— —
cache

a*b+c

emory

a*b

36

Numexpr Avoids (Big) Temporaries

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

_.-

_*
e

a b C a*b+c

memory

a*b

Mysteries (almost) Solved Now

076 = 008

(1)
0.107 0.484 0.22x
0059 0004 70
0.046 0.029 1.59x

e But why does is scale so differently ?

Numba: Overcoming numexpr Limitations

e Numbais a JIT compiler that can translate a subset of the Python language into machine code
e For a single thread, it can achieve similar or better performance than numexpr, but with more flexibility
e The costs of compilation can be somewhat high though

e Free software

39

Numba Example: Computing the Polynomial

from numba import jit

import numpy as np

10*1000*1000
np.linspace (-1, 1, N)
np.empty (N, dtype=np.float64)

def poly(x, Vy):

for 1 in range (N) :

y[i] = ((0.25*x[i] + 0.75)"

poly(x, V)
print (y)

40

Times for Computing the Polynomial

NumPy (1) 0.876 0.877 0.98x

NumPy (II) 0.107 0.484 0.22x
Numexpr (1) 0.059 0.034 1.74x
Numexpr (II) 0.046 0.029 1.59x
Numba (1) 0.731

Numba (Il) 0.037

Compilation time for Numba: 0.321 sec

41

Steps To Accelerate Your Code

In order of importance:

e Make use of memory-efficient libraries (many of the current bottlenecks fall into this category).
e Apply the blocking technique and vectorize your code.

e Parallelize

Parallelization is usually a pretty complex thing to program, so let’s use existing libraries first!

42

Summary

e These days, you should understand the hierarchical memory model if you want to get decent
performance.

e Existing memory-efficient libraries help you to perform your computations optimally.

e Do not blindly try to parallelize immediately. Do this as a last resort

43

Exercises

e Exercises 1 —4: Experimenting

o Just play around with different equations and settings to understand your hardware. Try to predict
the outcome, before you measure the performance.

o If possible, try to experiment with your own hardware and compare the results.
You only need numpy, numexpr, numba and the multiprocessing module.

o When you increase the data-set: keep our computer's memory-limit in mind!
o Discuss the different results within the group.

e Exercises 5 — 6: Problem solving

e time consuming, especially #6 is probably more something for a rainy week-end

e Do only what you think is fun, check otherwise the solutions.

44

More Info

e Ulrich Drepper:
What Every Programmer Should Know About Memory
RedHat Inc.,2007

e Bruce Jacob:
The Memory System
Morgan & Claypool Publishers, 2009 (77 pages)

e Francesc Alted:
Why Modern CPUs Are Starving and What Can Be Done about It

Computing in Science and Engineering, March 2010

45

http://people.redhat.com/drepper/cpumemory.pdf
http://dx.doi.org/10.2200/S00201ED1V01Y200907CAC007
http://dx.doi.org/10.1109/MCSE.2010.51

Acknowledgment

Based on the slides of Francesc Alted

46

https://python.g-node.org/python-summerschool-2013/starving_cpu.html

Some High Performance Libraries

e BLAS: Routines that provide standard building blocks for performing basic vector and matrix operations.

e ATLAS: Memory efficient algorithms as well as SIMD algorithms so as to provide an efficient BLAS
implementation.

e MKL: (Intel's Math Kernel Library): Like ATLAS, but with support for multi-core and fine-tuned for Intel
architecture. Its VML subset computes basic math functions (sin, cos, exp, log...) very efficiently.

e Numexpr: Performs relatively simple operations with NumPy arrays without the overhead of
temporaries. Can make use of multi-cores.

e Numba: Can compile potentially complex Python code involving NumPy arrays.

e JAX: high-performance numerical computing (with NumPy arrays): differentiate, vectorize, parallelize,
also just in time compilation with GPU support.

47

