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The ecosystem of Homo Python Scientificus

[Ondřej Čertík/LANL]
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NumPy – the fundamental container for scientific computing
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import numpy as np
https://www.numpy.org
NumPy offers memory-efficient data containers for fast numerical operations, e.g. in data
manipulation and typical linear algebra calculations

Standard Python

»»» L = list(range(1000))
»»» [i**2 for i in L]

NumPy

»»» import numpy as np
»»» a = np.arange(1000)
»»» a**2

⇒ Speed up by a factor of ∼ 100
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Details about NumPy
np.__version__ indicates version, np.show_config() reveals information about libraries

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject ;
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Creating NumPy arrays
There are several ways to do so

Creating arrays

»»» a = np.array([1,2,4]) # [1,2,4]
»»» b = np.arange(1,15,2) # [1,3,5,7,9,11,13]
»»» c = np.linspace(0,1,6) # [0.0,0.2,0.4,0.6,0.8,1.0]
»»» d = np.empty((1,3)) # empty 1x3 array
»»» e = np.zeros((2,5,3)) # 2x5x3 array of zeros
»»» f = np.ones((3,3)) # 3x3 array of ones
»»» g = np.eye(4) # 4x4 unit matrix
»»» h = np.identity(4) # 4x4 unit matrix
»»» i = np.diag(np.array([1,2,3,4])) # diagonal matrix
»»» l = np.diag(np.array([1,2,3,4]),k=-1) # values just below the main diagonal
»»» m = np.diag(np.array([1,2,3,4]),k=2) # values 2 rows above the main diagonal
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NumPy arrays of random numbers
Again, several possibilities

Creating arrays

»»» a = np.random.rand(4) # 4-elements array from [0,1)
»»» b = np.random.rand(4,3) # 4x3 array from [0,1)
»»» c = np.random.randint(1,3,(2,3)) # 2x3 array from [1,3)
»»» d = np.random.randn(4,5) # 4x5 array (norm. dist)
»»» e = np.random.poisson(3,5) # 5-element array (Poisson dist of mean 3)

Random seed can be set with np.random.seed(<integer>), useful for reproducibility of results
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Basic operations
Many basic functions/operators can be applied on NumPy arrays

Examples

»»» a = np.random.rand(3,4)
»»» b = np.random.rand(3,4)

»»» a+b
»»» a-b
»»» a*b # Which product? See exercise in this lecture
»»» a/b
»»» a+3.0

»»» a>b
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Basic operations - more
Many basic functions/operators can be applied on NumPy arrays

Examples

»»» a = np.random.rand(3,4)
»»» b = np.random.rand(3,4)

»»» a.min()
»»» a.min(axis=0)
»»» a.min(axis=1)

»»» np.exp(b)
»»» np.cos(b)

All element-wise operations including dedicated functions, called universal functions (ufunc)

math.exp(b)⇒ failure as it expects scalar
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Data representation
Data type accessible via dtype variable

Data type

»»» a = np.array([1,0,-2],dtype=np.int64) #[1,0,-2]
»»» b = np.array([1,0,-2],dtype=np.float64) #[1.0,0.0,-2.0]
»»» c = np.array([1,0,-2],dtype=np.bool) #[True,False,True]
»»» c.dtype # dtype(’bool’)
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Data structure
Information via attributes accessible:

ndim number of dimensions (axes)
shape size of the different dimensions (as a tuple, ndim elements)
size total number of elements
itemsize size of one element
nbytes data size
data memoryview of the data (tobytes() returns the byte representation)
flags among other things if the memory “belongs” to this array
strides number of bytes to jump to in-/decrement index by one (as a tuple)
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Data structure
Strides
Problem of one-dimensional memory to store multi-dimensional arrays:

Row

Column

Strides describe the logical alignment of the data within the memory
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Data structure
Strides
Problem of one-dimensional memory to store multi-dimensional arrays:

Row

Column

Transposing the array means to interchange
the strides of the different dimensions

Strides describe the logical alignment of the data within the memory
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Data structure
Information via attributes accessible:

ndim number of dimensions (axes)
shape size of the different dimensions (as a tuple, ndim elements)
size total number of elements
itemsize size of one element
nbytes data size
data memoryview of the data (tobytes() returns the byte representation)
flags among other things if the memory “belongs” to this array
strides number of bytes to jump to in-/decrement index by one (as a tuple)

Transpose of arrays can be called by <array name>.T⇒ inverts shape and strides (i.e.
C-contiguous↔ F-contiguous)

Be aware that many manipulations do not lead to memory duplications. You can force it
by the copy method.
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Shape manipulation
Possible to manipulate the shape of existing arrays

Examples

»»» a = np.random.randn(3,4)
»»» b = np.random.randn(4)
»»» c = np.random.randn(4,1)

»»» a.reshape(1,12)
»»» a.resize(1,12) # Modify existing array
»»» a.ravel()
»»» a.T
»»» b.shape #(4,) wrong way
»»» b.T # no changes
»»» c.shape #(4,1) right way
»»» c.T # expected behaviour
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Get the data
Reading data from txt/csv/etc. files can be sometimes very painful,
especially with complicated/mixed data structure

NumPy offers an easy way to read in data from text files
I function loadtxt(fname,dtype,comments,delimiter,skiprows,usecols,...)

I delimiter for columns separation, comments for the string indicating comments in the text file

I function genfromtxt(...,missing_values,filling_values)
I more advanced options for missing data

Binary files as well as text files are also readable via the function fromfile
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Get the data
Complicated data structure are manageable by defining the data type, e.g.

Solar.txt (Solar system on June 21, 2014)

Sun 332946 2.13E-03 -1.60E-03 -1.20E-04 5.01E-06 ...
Mercury 0.0552 1.62E-01 2.64E-01 6.94E-03 -2.97E-02 ...
Venus 0.8149 3.02E-01 6.54E-01 -8.44E-03 -1.85E-02 ...
Earth 1.00 5.66E-01 -8.46E-01 -9.12E-05 1.40E-02 ...

Datatype

»»» dt = np.dtype([(’name’,’|S7’),(’mass’,np.float),
(’position’,[(’x’,np.float),(’y’,np.float),(’z’,np.float)]),
(’velocity’,[(’x’,np.float),(’y’,np.float),(’z’,np.float)])])

»»» data = np.loadtxt(’Solar.txt’,dtype=dt)
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Strings in arrays
Strings in arrays are in principle not a problem (as seen before), but two things to keep in mind

1. Speed reduction due to a different common base type of the objects stored in the array
(i.e. PyObject)

2. Memory spoiling since the entry size is defined by the maximal length of the stored strings

⇒ if possible, better work with e.g. lookup tables

In general you can mix different data types in an array

Mixed datatype

»»» na = np.array([2,True,"Hello"],dtype=object)

without dtype=object the elements would be treated as strings
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Broadcasting – leveraging vectorisation
Memory-friendly way of combining arrays with different shapes in mathematical operations

Example:

1 8 3 7 + 3

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting
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Broadcasting – leveraging vectorisation
Memory-friendly way of combining arrays with different shapes in mathematical operations

Example:

1 8 3 7 + 3

3 3 3 3

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting
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Broadcasting – leveraging vectorisation
Memory-friendly way of combining arrays with different shapes in mathematical operations

Example:

1 8 3 7 + 3

3 3 3 3

4 11 6 10

Arrays are alignable if the number of elements in the dimensions match
(i.e. they are equal or there is only one element)

Details can be found in docstrings np.doc.broadcasting
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Broadcasting – more complex
Multiplication of a 3× 5-array and a 8-elements array

[S. v. d. Walt]

Broadcasting

»»» a = np.random.rand(3,5)
»»» b = np.random.rand(8)
»»» c = a[...,np.newaxis]*b
»»» c.shape # (3,5,8)

np.newaxis allows to align the dimensions of arrays so that they can be broadcasted, but be
careful and make sure the arrays are aligned as you want them.
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Broadcasting – matching rules
This principle can be expanded to multi-dimensional arrays,
e.g. a 3×4-array and a 4-elements array
⇒ adding/multiplying/etc. the 1D array to each of the three rows of the 2D array

Rule: Compare dimensions, starting from the last one. Match when either dimension is one or
None, or if dimensions are equal.

(3,4) (4,1,6) (3,4,1) (3,2,5) (4,2,3) (4,1,3)
(4) (1,3,6) (8) (6) (4,3) (4,3)

(3,4) (4,3,6) (3,4,8) not OK not OK (4,4,3)

Arrays can be extended to further dimensions by
<array name>[...,np.newaxis], e.g.

a.shape→ (3,2)
⇒ a[...,np.newaxis,np.newaxis].shape→ (3,2,1,1)
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Explicit broadcasting
NumPy has the method broadcast_arrays to align two or more arrays

Explicit Broadcasting

»»» d = np.random.rand(1,10)
»»» e = np.random.rand(10,1)
»»» dd,ee = np.broadcast_arrays(d,e)

dd and ee are now 10 × 10-arrays, but with-
out own data
Broadcasted arrays have a stride of zero ⇒
pointer stays while index moves
This concept is a generalisation of the
meshgrid function in MATLAB
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Simple indexing
NumPy allows to easily select subsets in the array, e.g.

Simple indexing

»»» a = np.arange(100).reshape(10,10)
»»» a[4:9] # rows 4 to 8
»»» a[:,3:8] # columns 3 to 7
»»» a[:,-1] # the last column
»»» a[-2::-3,1:6:2] # 2nd-to-last row every 3rd and every odd column from 1 to 5

Also repetition of rows or columns are possible, e.g.

Simple indexing (continued)

»»» a[:,[1,3,1]]

All these operations do not create additional memory entries!
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Fancy indexing
NumPy also allows to select subsets via arrays of indices, e.g.

Fancy indexing

»»» a = np.arange(100).reshape(10,10)
»»» i0 = np.random.randint(0,10,(8,1,8))
»»» i1 = np.random.randint(0,10,(2,8))
»»» a[i0,i1] # creates a 8×2×8 array

I First broadcasting of the two index arrays i0 and i1
I Then selecting the elements in a according to the broadcasted arrays

Caution: Mixing of indexing types (e.g. b[5:10,i0,:,i1]) can lead to unpredictable output
shapes (and to barely readable code)
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Pandas
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import pandas as pd – and never use Excel again!
https://pandas.pydata.org

I Python data analysis library
I Tools for reading and writing data and interface to a large variety of file formats

(nobody has heard about all of them!)
I Offering data containers plus corresponding functionality

I DataFrame object for data manipulation
I time series pd.Series and their notorious functions

(i.e. rolling-“whatever”-you-want function)
I many SQL-like data operations (group, merge, join)

I Data interface/API to many data repositories (Yahoo Finance, FRED)

Excel on steroids!
. . . but particularly helpful tool to transform data (clean-up, aggregation, . . . )
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numpy vs. pandas
NumPy

fast and good with numbers

Pandas

a bit slow and cool with everything
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Some functionalities and pitfalls
Functionalities

I Fill missing (NA) values according to different principles
I Timeseries applications (e.g. resample)
I Data aggregation (e.g. groupby)
I Merging tools (e.g. append, concat, merge, join)
I Derivation of new features via map (from Series) or apply (from Dataframe)

Pitfalls
I Pandas tries to be smart!!!
I It accepts data as long as it can derive the lowest common ancestor

(almost always the case although ending up with object)
I . . . so you should check the data types dtypes since your processing code (e.g. groupby)

will work, but not as expected
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NumPy and Pandas - reloaded
If you work with big data, chances are high that at some point you’ll encounter a MemoryError
when loading your data. What next?

I Dask
https://dask.pydata.org/en/latest/

I flexible parallel computing library for analytics
I compatible with NumPy, Pandas, Scikit-Learn and many others

Pandas
»»» import pandas as pd
»»» df = pd.read_csv(’2018-01-01.csv’)
»»» df.groupby(df.user_id).value.mean()

Dask
»»» import dask.dataframe as dd
»»» df = dd.read_csv(’2018-*-*.csv’)
»»» df.groupby(df.user_id).value.mean()

.compute()
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Other options for storing data

I Pickle, JSON, YAML and protocol buffers
I SQL and NoSQL
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Pickle and JSON – brothers from other mothers
Pickle

I Python proprietary
I . . . thus also Python objects storable
→ class instances
→ NumPy arrays

I Binary files

Pickle
»»» a = dict(...)
»»» with open(<filename>,’wb’) as f_o:
»»» pickle.dump(a,f_o)
»»» with open(<filename>,’rb’) as f_i:
»»» b = pickle.load(f_i)

JSON (javascript object notation)
I Interface to other/web applications
I Similar structures

Python: array→ JSON: array
Python: dict→ JSON: object

I Some format issues need to be cleared

JSON
»»» a = dict(...)
»»» with open(<filename>,’w’) as f_o:
»»» json.dump(a,f_o)
»»» with open(<filename>,’r’) as f_i:
»»» b = json.load(f_i)

. . . also string-wise possible (dumps/loads)July 10, 2024 Data structures – F. Lionetto Page 28
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YAML
Improved version of JSON

I language-portable
I more human-readable, e.g. indentation instead of symbols

Examples

data = {
’first_data’:[1,2,3,4,5],
’second_data’:’Just a string.’,
’third_data’: dict(a=1.1,b=1.2,c=1.3)}
with open(’example.yaml’,’w’,default_flow_style=False) as f_o :
yaml.dump(data,f_o)

with open(’example.yaml’,’r’) as f_i:
new_data = yaml.load(f_i)
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Protocol buffers
Example: address book application that can read and write information from/to a file. How do we
exchange this data?

I Pickle
I JSON
I Custom encoding
I XML
I protobuf: Google’s mechanism for serialising structured data that uses a binary format to

transfer messages
I it works with different programming languages
I it transfers data as fast as possible, as compact as possible
I well-defined schema, but no need to worry if schema changes over time
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How to work with protocol buffers

I Define messages (and their fields) in a .proto file
I messages can consist of fields and other messages, nested structure
I fields have name, type, modifier and tag

I Use the protocol buffer compiler to compile the .proto file
I Use the Python protocol buffer API to read and write messages
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Connection to SQL Databases - sqlite3
What is SQLite? (https://www.sqlite.org)

I Lightweight disk-based (= server-less) SQL-type (= spreadsheet-based) database system
I Does not require a separate server process
I Understands most of the standard SQL language but omits some features

(drop column, rename column)
I Due to the outsourced write-interlock handling write-intensive programs will suffer

Another option, SQLAlchemy (http://www.sqlalchemy.org)
I Python SQL toolkit that gives developers the full power and flexibility of SQL
I Probably the most suitable package for a database-type independent approach, with

connections to:
I MySQL
I Microsoft Access
I SQLite
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A Few Typical (SQL) Commands
https://www.sqlite.org

Purpose Command

Retrieve all data from a table SELECT * FROM <table>

Retrieve columns (c1,c2) from table t
based on condition

SELECT c1,c2 FROM t WHERE <cond>

Group entries according to values SELECT SUM(c1),AVG(c2) FROM t GROUP BY c3,c4

Add new entry INSERT INTO t (c1,c2) values (v1,v2)

Delete one or more entries DELETE FROM t WHERE c1=v1 AND c2=v2
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sqlite3
https://docs.python.org/3.6/library/sqlite3.html

I Database operations on sqlite3 databases
I sqlite3.connect to get a handler on the database
I Default output of (part of) a row is a list

=⇒ possibility to change the behaviour via the row_factory variable of the database
I Use ? as placeholder instead of concatenating the SQL command by Python string

operations
I Use executemany() to run same SQL command with several parameter sets
I All executed commands need to be commited before closing the connection

(<dbvariable>.commit())
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Summary

I Python offers various options to handle data suitable for different purposes
I NumPy is a very powerful tool for numerical computations and data manipulations
I Pandas offers functionalities of the combination of spreadsheet and database processing
I Various other options to store data – different formats for different purposes

I Further leverage with analytics tool (scipy) =⇒ Scientific analysis lecture
I Very handy tool for data management. . .
I . . . but, for certain particular tasks, other and more suitable options (e.g. large image

databases that can be heavily compressed)
I Try it out, try it out, try it out!
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Data Structure (Advanced)
Further information via the flags variable accessible:

C_CONTIGUOUS dimension ordering C-like
F_CONTIGUOUS dimension ordering Fortran-like
OWNDATA responsibility of memory handling
WRITEABLE data changable
ALIGNED appropriate hardware alignment
UPDATEIFCOPY update of base array

C-contiguous:
a[0, 0], a[0, 1], ... , a[0, n], a[1, 0], ... , a[m, n]

F-contiguous:
a[0, 0], a[1, 0], ... , a[m, 0], a[0, 1], ... , a[m, n]
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Broadcasting (Dimensional)
This principle can be expanded to multi-dimensional arrays, e.g. a 3×4-array and a 1D
4-elements array⇒ adding/multiplying/etc. to each of the three rows the 1D array

Rule: Compare dimensions, starting from the last one. Match when either dimension is one or
None, or if dimensions are equal.

(3,4) (4,1,6) (3,4,1) (3,2,5)
(4) (1,3,6) (8) (6)

(3,4) (4,3,6) (3,4,8) not OK

Arrays can be extended to further dimensions by
<array name>[...,np.newaxis], e.g.

a.shape→ (3,2)
⇒ a[...,np.newaxis,np.newaxis].shape→ (3,2,1,1)
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