i %) University of P
Z M S ° UZH
=g Lurich
Faculty of Science Scientific Programming with Python
Software-based Speed-up 11 July 2024
Exercises

Licence: CC-by-sa 4.0

Before you start:
— create a suitable directory for this exercise

— download the zipped material from http://www.physik.uzh.ch/~python/python/lecture_

ct++/

Exercise 1: Root Finder

Find iteratively a root of a function f by calculating z,, = zp—1 — f(2n-1)/f'(zn-1. Select a
start value xog and stop the iteration once f(z,) is close enough to zero e.g. |f(zy)| < € with
€ = 0.001. This is the so-called Newton method.

Design the algorithm first in pure Python and then in Cython. Compare the performance. You
can use f(z) = 2> + x as a function for test purposes.

Tip: You can start with a simple version and then improve the functionality, e.g. defining the
function or the precision of the derivative calculation at runtime.

Exercise 2: Differential Equation Solver

Implement the functionality of a differential equation solver taking as arguments the starting
value of the independent, ¢ = %3, and the dependent variable, x = x(, as well as the actual
equation as a function 2’ = f(z,1).

Create first the pure Python and then the Cython implementation. You can take your favourite
solving algorithm (Euler (x(t+At) = z(t)+2'(t)At), Runge-Kutta, ...; en.wikipedia.org/wiki/
Numerical methods_for_ordinary differential_equations).

Tip: Create it first for a single equation and afterwards expand it to an array of coupled
equations also allowing for higher-orders. The output of the solver could be an array of z(t) at
the different time steps or just the value of x at the final time.

You can use as a test bed for the single equation d7'/dt + C(T — Tp) = 0 corresponding to the
temperature change of an object in an environment with ambient temperature Ty. For a set of
functions you can use the differential equation of a damped oscillator d2z/dt?+ fdz /dt +w?z = 0
(i.e. with the second trivial equation z’ = dx/dt).

Christian Elsasser 11 July 2024

http://www.physik.uzh.ch/~python/python/lecture_c++/
http://www.physik.uzh.ch/~python/python/lecture_c++/
http://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
http://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations

Software-based Speed-up, Scientific Programming with Python 2024 2

Exercise 3: Auto-Regressive Model
We want to simulate an auto-regressive time series X; of the form
Xi=c+taX; 1+¢g

where ¢; is a uniform random number between —1 and 1, Xy = 0, ¢ is a constant and || < 1.

Create an algorithm returning the n-th value of the series. Use pure python as well as Cython.
How large is the gain in CPU time?

Tip: You can import into Cython C’s standard library random number generator for positive
integers and the maximum value wiht from libc.stdlib cimport rand, RAND_MAX.

Exercise 4: Exception Handling in Cython

This exercise has the goal to play a bit with the exception behaviour in Cython.

You can find in the folder exception for this part the file exceptl.pyx a function throwing
an error if its input is zero. Otherwise it returns the input value. Compile this Cython code
running the corresponding setup script setup_exceptl.py as we have learnt in the lecture. (Be
aware that you might need to change the shared object name due to additional extensions!)
Afterwards you can use the runExceptl.py script to run the function in an except clause with $
python runExceptl.py <input number>. What happens if the input is 0, 1 or 27 And why?

Add the except * statement in the definition of pythonError in exceptl.pyx. Recompile the
file and run it again. What happens now?

Now change it to except 1 and recompile it. What is now the outcome and why?

Now we want also study the handling of C++ exceptions. You can find a bunch of functions
raising C++ exceptions in except.h. The file except2.pyx wraps them. So compile this Cython
code with the setup_except2.py file and import the created module in a Python session. Try
out what happens if you call the different wrapper functions. How can you change this annoying
behaviour (seen in the lecture)? How can you force the wrapper functions to throw a specific
Python error? Try it out!

In the last part of this exercise we want to discuss a specific difference between Python and C.
You can find in the corresponding exercise folder the file div.c. Compile this program with
$ g++ div.c -o div. This program takes two numbers as arguments and calculates the ratio
(e.g. $./div 3 4). What happens if you make a division by zero? Now start Python and
perform a division by zero. What happens?

Create a function in Cython that calculates the ratio of two numbers. What is the output in
case of a division by zero here?

Cython has a way to force C behaviour on this issue. The cython module has a decorator
Qcython.cdivision(bool), which can be called before the function. Try it out!

Exercise 5: Playing with STL in Cython

Write an algorithm that finds all anagrams (i.e. words with the same set of letters) based on a
Python dictionary (Python) or a std::map in Cython. Use the /usr/share/dict/ words file
as input. What is the set of letter allowing to build to largest number of words? (If you struggle
with the algorithm, have a look at STL/anagram.py!)

Compare the Python and the Cython implementation in terms of spent CPU time. Why does
the observed result occur? How can you improve the speed of the Cython version?

Christian Elsasser 11 July 2024

Software-based Speed-up, Scientific Programming with Python 2024 3

Exercise 6: Wrap a Function in Cython

The folder wrapping func contains the file 1ibgcd.c that includes the function gcd that im-
plements the Euler algorithm to find the greatest common divisor.

Write Cython code that wraps this function to expose it in Python (you have seen some similar
example in the lecture when we talked about exceptions) and then compile it to create a Python
module.

There are the files wrapping.pyx and setup.py that contain the code to wrap it as well as to
build the code, but try it first from scratch.

You can also start by trying to run the example from the lecture material.

Exercise 7: Wrap a Class in Cython

The folder wrapping class contains a C++ class Vector and its derived class UnitVector.
Have a look at the corresponding files. Some of the features are commented out at the moment.
Write a wrapper in Cython for the Vector class (¢f. lecture). Compile the code to a shared
object and test it in Python.

Include now also the coordinates function using std: :vector.
Include the addition operator.

Also try to include all the other operators.

Finally, write also a wrapper for the UnitVector class.

Write some test functions in Python and measure the CPU time. If you are still not bored about
wrapping C++ classes, write the same test functions in C4++ and compare the used CPU time.
You can also start by trying to run the example from the lecture material.

Exercise 8: Wrap a Class with SWIG

The folder wrapping class contains a C++ class Vector and its derived class UnitVector.
Have a look at the corresponding files. Some of the features are commented out at the moment.
Write a SWIG interface file for the Vector class (cf. lecture). Compile a shared object and test
it in Python.

Include sequentially the excluded functions and operators, modify the interface file and recompile
the shared object.

Write some test functions in Python to measure the CPU time, compare it to — if done — the
Cython wrapping and the same test functions in pure C++.
You can also start by trying to run the example from the lecture material.

Exercise 9: NumPy vs. Cython

One topic which was not discussed in the lecture, is the use of arrays in Cython. You can find
in the back-up slides some information about this aspect. Typically, this is treated with typed
memoryviews allowing an efficient memory access. The declaration of arrays is done as, e.g. for a
two-dimensional double array double[:,::1]. The :1 part indicates the fastest changing index,
i.e. in doublel[:,::1] corresponds to a C-contiguous and double[::1,:] to a F-contiguous
array. doublel[:,:] is compatible with C- and F-contiguous arrays.

Write a function that returns the element-wise squared version of the input array.

Christian Elsasser 11 July 2024

Software-based Speed-up, Scientific Programming with Python 2024 4

Compare it to the NumPy and the Python calculation in terms of CPU time.
Write a function that takes two two-dimensional arrays and calculates the matrix product. Again
compare it to the NumPy matrix calculation in terms of speed.

If you still are interested in arrays in Cython, play around with the different alignments and
test the impact on the speed of your code.

Exercise 10: Fortran

For those of you who still do it the Old School way: The folder fortran contains some files
including a README that can be used as a starting point for interfacing Python code with
Fortran77 and Fortran90 code. Have fun and play around!

Exercise 11: Importing

We saw in the lecture that we can use classes defined in Cython as base classes for classes im-
plemented in Python. But such implementations have disadvantages in terms of speed.

In this exercise we see how we can develop new Cython-based modules leveraging functionalities
implemented in other modules.

The folder importing contains two setup script: one to create a module based on the imple-
mentation of the function class for integrals discussed in the lecture (defined in integrate.pyx)
and one to implement further functions leveraging the base class (defined in polynomial.pyx).

To do such an implementation a .pxd file needs to be created that specifies the interface of the
functions and classes we are planing to integrate into new Cython modules. This is a similar
concept as with header files in C++.

Run through the different steps and test the code with the corresponding notebook PythonC_ex_11
_Import.ipynb.

Exercise 12: JAX

Have a look at the corresponding notebook PythonC_ex_12_JAX.ipynb.

Generate a 10°000x 10’000 array of random variables and run some tests in terms of performance
of polynomial functions (e.g. x3 4 222 — 8z + 3), exp(x), log(x), sin(x) or 1/z applied to JAX
arrays versus NumPy arrays. How does applying a just-in-time compilation change the situation.

JAX also provides auto-differentiation functionality. This is in particular useful for nested
functions as they are subject to the chain rule. Apply it to the function f(z) = exp(sin(1/x))
and then use it to calculate the derivatives between 0.01 and 100. Compare the performance
of the auto-diff version from JAX to the numerical differentiation, but also to the analytical
derivative df /dz = — exp(sin(1/x)) - cos(1/z) - x=2. What do you observe in terms of accuracy
and why?

Christian Elsasser 11 July 2024

