
Faculty of Science

Software-based Speed-up Techniques
Scientific Programming with Python

Christian Elsasser

Partially based on a talk by Stéfan van der Walt This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

11 July 2024 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/4.0/

Faculty of Science

Python is nice, but by construction not very fast . . .

[xkcd]

11 July 2024 Software-based speed-up Page 2

http://xkcd.com/353

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling
1

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling
1 2

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling
1 2

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling
1 2

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling
1 2

NumPy Cython
SWIG
boost::python
Ctypes

JAX

11 July 2024 Software-based speed-up Page 3

Faculty of Science

. . . so how can we overcome this issue?

Need for speed!

Vectorisation Compiling
1 2

NumPy Cython
SWIG
boost::python
Ctypes

JAX
Interface to C/C++

11 July 2024 Software-based speed-up Page 3

Faculty of Science

JAX - Accelerator-oriented Array Computation and Program
Transformation
by Google

I Auto-vectorisation: Translating of code into an optimised version that is better leveraging
vectorisation

I Just-in-time (JIT) compilation: Compiling of functions “on the fly” to improve their
performance

I Auto-parallelisation: Automated conversion of code into a code running on multiple CPUs
or GPUs

I Automatic differentiation: techniques leveraging mathematical rules to algorithmically
evaluate derivatives, in particular for nested functions (i.e. via the chain rule)

I Same code can be run not just on CPUs, but also on GPUs and TPUs.

11 July 2024 Software-based speed-up Page 4

Faculty of Science

C keeps Python running . . .

I CPython is the standard implementation of the Python interpreter written in C.
I The Python C API (application programming interface) allows to build C libraries that can be

imported into Python (https://docs.python.org/3/c-api/)

The sum function . . .

Pure Python

>>>>>> a = [1,2,3,4,5,6,7,8]
>>>>>> sum(a)
36
>>>>>> b = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]
>>>>>> sum(b)
3.6

. . . looks in the back like this . . .
11 July 2024 Software-based speed-up Page 5

https://docs.python.org/3/c-api/

Faculty of Science

. . . but takes a lot of the fun out of Python
C++ implementation

sum_list(PyObject *list) {
int i, n;
long total = 0;
PyObject *item;
n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

11 July 2024 Software-based speed-up Page 6

Faculty of Science

C/C++ in Python: Not a New Thing

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD;
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject;

⇒ Several Python “standard” libraries are using C/C++ to speed things up

11 July 2024 Software-based speed-up Page 7

Faculty of Science

Example 1: Fibonacci series

Fibonacci function - Python

def fib(n):

a,b = 1,1
for i in range(n):

a,b = a+b,a
return a

11 July 2024 Software-based speed-up Page 8

Faculty of Science

Example 1: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):

a,b = a+b,a
return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

I A few (simple) modifications can easily change the CPU time by a factor of O(100)

11 July 2024 Software-based speed-up Page 8

Faculty of Science

Example 2: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

11 July 2024 Software-based speed-up Page 9

Faculty of Science

Example 2: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

I Return values of function can be specified via the key word cdef
I cpdef⇒ function also transparent to Python itself (no performance penalty)

I C/C++ library can be imported via from libc/libcpp.<module> cimport <name> (see in
the appendix and exercises)

I Using C++ functions can lead to a huge speed-up
I Try to do as much as you can in the C-layer

I Already huge speed-up when leveraging NumPy and its vectorisation

11 July 2024 Software-based speed-up Page 9

Faculty of Science

Cython can also handle and interact with other features of C/C++

I Cython comes with access to fundamental C libraries like (math, stdlib)
I There is a mapping between Python types and STL containers (e.g. std::vector) (see

appendix).
I The same is also true for exceptions/errors in Python and C++.

You can find more details in the appendix and in the exercises.

11 July 2024 Software-based speed-up Page 10

Faculty of Science

Integration of C Functions in Cython
Starting point: .c/.h file for function definition e.g. fast_inv_sqrt

1. Expose it to Cython by declaring the function signature.

2. Integrating it into Cython either via direct usage or by defining a wrapper function.

C function definition in c_func.c

include <stdio.h>

double fast_inv_sqrt(double number)
{

...
}

11 July 2024 Software-based speed-up Page 11

Faculty of Science

Integration of C Functions in Cython
Starting point: .c/.h file for function definition e.g. fast_inv_sqrt

1. Expose it to Cython by declaring the function signature.

2. Integrating it into Cython either via direct usage or by defining a wrapper function.

Wrapping the function

cdef extern from "c_func.c":
double fast_inv_sqrt(double number)

def py_fis(number:double) -> double:
return fast_inv_sqrt(number)

def norm_vector(values:list) -> list:
length_squared = sum([x**2 for x in values])
return [x*fast_inv_sqrt(length_squared) for x in values]

11 July 2024 Software-based speed-up Page 11

Faculty of Science

Compiling Cython Code outside of a notebook
Support via setuptools for building and installing Python modules⇒ applicable for cython

Cython setup script

from setuptools import setup
from Cython.Build import cythonize

setup(ext_modules = cythonize([<name of .pxy files>],
language_level=3

))

Execute: python setup.py build_ext --inplace
Creates a .c/.cpp file for each .pyx file, then compiles it to an executable (in build
sub-directory) and compiles a .so file (or a .pxd if you are using Windows)

Further options for cythonize via help explorable

11 July 2024 Software-based speed-up Page 12

Faculty of Science

Automatic Wrappers
. . . since not everybody likes to write lines of error-prone code

I SWIG
I boost::python
I ctypes
I . . .

Goal: creating compilable C/C++ code
based on the Python C API

11 July 2024 Software-based speed-up Page 13

Faculty of Science

SWIG
SWIG: Simplified Wrapper and Interface Generator

I Generic Wrapper for C/C++ to script-like languages
I R
I Perl
I Ruby
I Tcl
I PHP5
I Java
I . . . and Python

I Pretty old – created in 1995 by Dave Beazley
I Current version is 4.0.2

11 July 2024 Software-based speed-up Page 14

Faculty of Science

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

11 July 2024 Software-based speed-up Page 15

Faculty of Science

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

11 July 2024 Software-based speed-up Page 15

Faculty of Science

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

11 July 2024 Software-based speed-up Page 15

Faculty of Science

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

11 July 2024 Software-based speed-up Page 15

Faculty of Science

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

11 July 2024 Software-based speed-up Page 15

Faculty of Science

SWIG – The setup.py file

setuptools setup script (setup.py)

from setuptools import setup, Extension
extension_mod = Extension("_<name>" , # Use _ to distinguish to final module name

["<name_wrap>.cxx",
"<source1>.cpp",
"<source2>.cpp","..."],

language='c++')
setup(name = "_<name>", ext_modules=[extension_mod])

I To be build extension needs a different name than the module set up by SWIG
(default: _name

I Language option only needed for C++
I python setup.py build_ext --inplace

11 July 2024 Software-based speed-up Page 16

Faculty of Science

Summary

I There are several options to improve the speed of your code:
I Vectorisation:

I NumPy
I JAX

I Compiling:
I JIT compiling
I Cython
I Write your code in a compiled language and wrap it for Python

I Some further tools and considerations discussed by Roman in the afternoon

I Wrapping is particularly interesting for existing code allowing to integrate existing
functionality in different languages.

11 July 2024 Software-based speed-up Page 17

Faculty of Science

Summary

I There are several options to improve the speed of your code:
I Vectorisation:

I NumPy
I JAX

I Compiling:
I JIT compiling
I Cython
I Write your code in a compiled language and wrap it for Python

I Some further tools and considerations discussed by Roman in the afternoon

I Wrapping is particularly interesting for existing code allowing to integrate existing
functionality in different languages.

11 July 2024 Software-based speed-up Page 17

Faculty of Science

Appendix

Faculty of Science

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

11 July 2024 Software-based speed-up Page 19

Faculty of Science

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

11 July 2024 Software-based speed-up Page 19

Faculty of Science

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

11 July 2024 Software-based speed-up Page 19

Faculty of Science

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

11 July 2024 Software-based speed-up Page 19

Faculty of Science

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

11 July 2024 Software-based speed-up Page 19

Faculty of Science

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

Object holders with specific memory access structure, e.g.
I std::vector allows to access any element
I std::list only allows to access elements via iteration
I std::map represents an associative container with a key and a mapped values

11 July 2024 Software-based speed-up Page 20

Faculty of Science

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

. . . and Cython knows how to treat them!

Python → C++ → Python
iterable → std::vector → list
iterable → std::list → list
iterable → std::set → set

iterable (len 2) → std::pair → tuple (len 2)
dict → std::map → dict

bytes → std::string → bytes

11 July 2024 Software-based speed-up Page 20

Faculty of Science

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

A few remarks!
I iterators (e.g. it) can be used⇒ dereferencing with dereference(it) and

incrementing/decrementing with preincrement (i.e. ++it), postincrement (i.e. it++),
predecrement (i.e. --it) and postdecrement (i.e. it--) from cython.operator

I Be careful with performance! ⇒ performance lost due to shuffling of data
I More indepth information can be found directly in the corresponding sections of the cython

code https://github.com/cython/cython/tree/master/Cython/Includes/libcpp
I C++11 containters (like std::unordered_map) are partially implemented

11 July 2024 Software-based speed-up Page 20

https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

Faculty of Science

Exceptions/Errors
In terms of exception and error handling three different cases need to be considered:

I Raising of a Python error in cython code⇒ return values make it impossible to raise
properly Python errors (Warning message, but continuing)

I Handling of error codes from pure C functions
I Raising of a C++ exception in C++ code used in cython⇒ C++ exception terminates – if

not caught – program

11 July 2024 Software-based speed-up Page 21

Faculty of Science

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

11 July 2024 Software-based speed-up Page 22

Faculty of Science

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

Python Error in Cython - treated

cpdef int raiseError() except *:
raise RuntimeError("A problem")
return 1

⇒ Propagates the RuntimeError

11 July 2024 Software-based speed-up Page 22

Faculty of Science

Errors in C
C does not know exceptions like Python or C++. If errors should be caught, it is usually done via
dedicated return values of functions which cannot appear in a regular function call.

Use the except statement to tell cython about this value

Handling a C Error

cpdef int raiseException() except -1:
return -1

11 July 2024 Software-based speed-up Page 23

Faculty of Science

Exceptions in C++

[xkcd]

In cython this is also true for C++ exceptions!

Cython is not able to deal with C++ exceptions in a try-and-except clause!

⇒ But capturing in cython and translating to Python exceptions/errors is possible!

11 July 2024 Software-based speed-up Page 24

Faculty of Science

Exceptions in C++
. . . and how to tackle them!

I cdef <C++ function>() except +
⇒ translates a C++ exception into a Python
error according to the right-hand scheme

I cdef <C++ function>() except
+<Python Error> e.g. MemoryError⇒
translates every thrown C++ exception into
a MemoryError

I cdef <C++ function>() except
+<function raising Python error>⇒
runs the indicated function if the C++
function throws any exception. If <function
raising Python error> does not raise an
error, a RuntimeError will be raised.

C++ → Python
bad_alloc → MemoryError
bad_cast → TypeError

domain_error → ValueError
invalid_argument → ValueError
ios_base::failure → IOError

out_of_range → IndexError
overflow_error → OverflowError

range_error → ArithmeticError
underflow_error → ArithmeticError

(all others) → RuntimeError

11 July 2024 Software-based speed-up Page 24

Faculty of Science

Classes
Classes are a common feature of Python and C++

There are two aspects when dealing with cython:
I Defining classes containing C++ code in cython
I C++ classes integrated into Python

11 July 2024 Software-based speed-up Page 25

Faculty of Science

Defining Classes in Cython
Let’s go back to the integration examples

Defining classes in Cython

cdef class Integrand:
cpdef double evaluate(self,double x) except *:

raise NotImplementedError()

cdef class SinExpFunction(Integrand):
cpdef double evaluate(self,double x):

return sin(x)*exp(-x)

def integrate(Integrand f,double a,double b,int N):
...
s += f.evaluate(a+(i+0.5)*dx)

11 July 2024 Software-based speed-up Page 26

Faculty of Science

Defining Classes in Cython
Let’s go back to the integration examples

Adding classes in Python

class Poly(Integrand):
def evaluate(self,double x):

return x*x-3*x
integrate(Poly(),0.0,2.0,1000)

⇒ Speed lost with respect to definition in cython, but still faster than a pure Python
implementation

11 July 2024 Software-based speed-up Page 26

Faculty of Science

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Exposing C++ classes in Cython

distutils: language = c++
distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, y0, x1, y1
int getLength()
int getHeight()
int getArea()
void move(int, int)

11 July 2024 Software-based speed-up Page 27

Faculty of Science

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Wrapping the class for Python

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)
def __dealloc__(self):

del self.thisptr
def getLength(self):

return self.thisptr.getLength()
def getHeight(self):

return self.thisptr.getHeight()
...

11 July 2024 Software-based speed-up Page 27

Faculty of Science

Arrays
Arrays in cython are usually treated via typed memoryviews (e.g. double[:,:] means a
two-dimensional array of doubles, i.e. compatible with e.g. np.ones((3,4)))

Further you can specify which is the fastest changing index by :1, e.g.
I double[::1,:,:] is a F-contiguous three-dimensional array
I double[:,:,::1] is a C-contiguous three-dimensional array
I double[:,::1,:] is neither F- nor C-contiguous

For example a variable double[:,::1] a has as NumPy arrays variables like shape and size
and the elements can be accessed by a[i,j]

But be aware: NumPy is already heavily optimised, so do not to reinvent the wheel!

11 July 2024 Software-based speed-up Page 28

	Appendix

