Nicola Chiapolini, July 14, 2023

Useful Modules
Scientific Programming with Python

Nicola Chiapolini

July 14, 2023

@ @ This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Argparse

#!/usr/bin/enyv pythond
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument ("integers", metavar="N", type=int, nargs="+",
help="an integer for the accumulator")
parser.add_argument(“——sum", dest=""accumulate', action='store_const",
const=sum, default=max,
help="sum the integers (default: find the max)")
args = parser.parse_args()

print (args.accumulate (args.integers))

$./argparsedemo.py --sum 1 2 3 4
10

Nicola Chiapolini, July 14, 2023

Argparse: Summary

» argparse allows parsing of commandline options.
» part of Python’s standard library
» useful to quickly change how program gets executed

https://docs.python.org/3/library/argparse.html

Nicola Chiapolini, July 14, 2023 4

Click

Makes writing CLI (Command Line Interfaces) even easier.

#!/usr/bin/env pythond
""" Process some integers.
import click

o

@click.command ()
Qclick.argument ("integers", type=int, nargs=-1, required=True)
Qclick.option("--sum/--max", "-s/-m", "sum_", default=False, help="use sum or max (default: max)")
def process(sum_, integers):

accumulator = max

if sum_:

accumulator = sum
print (accumulator (integers))

if __name__ == "__main__":
pylint: disable=no-value-for-parameter
process()

$./clickdemo.py --sum 1 2 3 4
10

Nicola Chiapolini, July 14, 2023

Configparser

Load configuration from files.

[setup]

import configparser
sum = True

conf = configparser.ConfigParser()

conf.read(["config.ini"]) [values]

ints = 1,2,3

accumulator = max
if conf["setup"].getboolean("sum", False):
accumulator = sum

integers = [
int(v) for v in (conf["values"]["ints"]).split(",")

]

print (accumulator (integers))

Nicola Chiapolini, July 14, 2023

-
Requests

requests perform web-requests, both GET and POST (and more) to interact with anything reachable over
the internet.
BeautifulSoup parses XML/HTML documents.

import requests
from bs4 import BeautifulSoup

Re-use the connection to the server

session = requests.Session()

Get the webpage

url = "https://www.physik.uzh.ch/~python"

response = session.get(url)

Fail early if unexpected response
response.raise_for_status()

Read it into a datastructure that is easy to query
soup = BeautifulSoup(response.text, "lxml")

links = [a['href'] for a in soup.select("a.internal")]

Nicola Chiapolini, July 14, 2023

Selenium

selenium allows to remote controle a real browser. |.e. all JavaScript and other dynamic content will really

be rendered.

coding: utf-8
from selenium import webdriver

driver
driver
driver
driver

= webdriver.Chrome ()

.get ("https://www.uzh.ch")
.find_elements ("tag name",
.find_elements("tag name",

||aH)
"a")[-1].click()

Subprocess

Sometimes you need to run external commands, for which no Python module exists. This can be done with

the subprocess module.
It has recently (Python 3.7) been simplified a lot:

import subprocess

show ‘du -h #' and “du -h . on the commandline

result = subprocess.run(["du", "-n", "."])

print(result)

print()

result = subprocess.run(["du", "-h", "."], capture_output=True)

print(result)

print("output: ", result.stdout.decode())
print("error: ", result.stderr.decode())
print()

result = subprocess.run(["du", "-h", "#"], capture_output=True)
print("output: ", result.stdout.decode())

print("error: ", result.stderr.decode())

print()

result = subprocess.run(["du -h *"], capture_output=True, shell=True)
print("output: ", result.stdout.decode())

print("error: ", result.stderr.decode())

print()

result2 = subprocess.run(["cat"], capture_output=True, input=b"test")
print("output: ", result2.stdout.decode())

