
Nicola Chiapolini, July 14, 2023 1 / 8

Useful Modules
Scientific Programming with Python

Nicola Chiapolini

July 14, 2023

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, July 14, 2023 2 / 8

Argparse

#!/usr/bin/env python3

import argparse

if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("integers", metavar="N", type=int, nargs="+",

help="an integer for the accumulator")
parser.add_argument("--sum", dest="accumulate", action="store_const",

const=sum, default=max,
help="sum the integers (default: find the max)")

args = parser.parse_args()

print(args.accumulate(args.integers))

$./argparsedemo.py --sum 1 2 3 4
10

Nicola Chiapolini, July 14, 2023 3 / 8

Argparse: Summary

▶ argparse allows parsing of commandline options.
▶ part of Python’s standard library
▶ useful to quickly change how program gets executed

https://docs.python.org/3/library/argparse.html

Nicola Chiapolini, July 14, 2023 4 / 8

Click

Makes writing CLI (Command Line Interfaces) even easier.
#!/usr/bin/env python3

""" Process some integers. """

import click

@click.command()
@click.argument("integers", type=int, nargs=-1, required=True)
@click.option("--sum/--max", "-s/-m", "sum_", default=False, help="use sum or max (default: max)")
def process(sum_, integers):

accumulator = max
if sum_:

accumulator = sum
print(accumulator(integers))

if __name__ == "__main__":
pylint: disable=no-value-for-parameter

process()

$./clickdemo.py --sum 1 2 3 4
10

Nicola Chiapolini, July 14, 2023 5 / 8

Configparser

Load configuration from files.

import configparser

conf = configparser.ConfigParser()
conf.read(["config.ini"])

accumulator = max
if conf["setup"].getboolean("sum", False):

accumulator = sum

integers = [
int(v) for v in (conf["values"]["ints"]).split(",")
]

print(accumulator(integers))

[setup]
sum = True

[values]
ints = 1,2,3

Nicola Chiapolini, July 14, 2023 6 / 8

Requests

requests perform web-requests, both GET and POST (and more) to interact with anything reachable over
the internet.
BeautifulSoup parses XML/HTML documents.

import requests
from bs4 import BeautifulSoup

Re-use the connection to the server

session = requests.Session()
Get the webpage

url = "https://www.physik.uzh.ch/~python"
response = session.get(url)
Fail early if unexpected response

response.raise_for_status()
Read it into a datastructure that is easy to query

soup = BeautifulSoup(response.text, "lxml")
links = [a['href'] for a in soup.select("a.internal")]

Nicola Chiapolini, July 14, 2023 7 / 8

Selenium

selenium allows to remote controle a real browser. I.e. all JavaScript and other dynamic content will really
be rendered.

coding: utf-8

from selenium import webdriver
driver = webdriver.Chrome()
driver.get("https://www.uzh.ch")
driver.find_elements("tag name", "a")
driver.find_elements("tag name", "a")[-1].click()

Nicola Chiapolini, July 14, 2023 8 / 8

Subprocess

Sometimes you need to run external commands, for which no Python module exists. This can be done with
the subprocess module.
It has recently (Python 3.7) been simplified a lot:

import subprocess

show `du -h *` and `du -h .` on the commandline

result = subprocess.run(["du", "-h", "."])

print(result)

print()

result = subprocess.run(["du", "-h", "."], capture_output=True)

print(result)

print("output: ", result.stdout.decode())

print("error: ", result.stderr.decode())

print()

result = subprocess.run(["du", "-h", "*"], capture_output=True)

print("output: ", result.stdout.decode())

print("error: ", result.stderr.decode())

print()

result = subprocess.run(["du -h *"], capture_output=True, shell=True)

print("output: ", result.stdout.decode())

print("error: ", result.stderr.decode())

print()

result2 = subprocess.run(["cat"], capture_output=True, input=b"test")

print("output: ", result2.stdout.decode())

