Nicola Chiapolini, July 11, 2023

Test, Debug, Profile

Nicola Chiapolini

Physik-Institut
University of Zurich

July 11, 2023

Based on a talk by Pietro Berkes
®0 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, July 11, 2023 2/48

Introduction es ebug Profile

Scientific Programming

Goal

» allow exploring many different approaches
» allow frequent changes and adjustments
» produce correct and reproducible results

Requirements

» bugs most be noticed

» code can be modify easily

» others can run code too

» scientist’s time is used optimally

Nicola Chiapolini, July 11, 2023 3/48
Introduction

Effect of Software Errors

—>

Frequency

—>
Severity

Nicola Chiapolini, July 11, 2023

ductio

Effect of Software Errors: Retractions

RETRACTION | VOLUME 30, ISSUE 4, P754, FEBRUAR

Retraction Notice to: How birds outperform humans in multi-
component behavior

Sara Letzner 2 [» Onur Gintirkin « Christian Beste 2

DOI: https/idoi.org/10.1016/;cub.2020.02.006 +

= PlumX Metrics

(Current Biology 27, R996-R998; September 25, 2017)

In our Correspondence, we reported evidence leading us to conclude that pigeons are on par with
humans when tested with a behavioral task that demands simultaneous processing resources; in
particular, we claimed that pigeons show faster responses than humans when sub-tasks are
separated with a short STOP-CHANGE delay of 300 ms—the "SCD 300" condition (time
advantage of 200 ms). We have subsequently discovered, however, that the MATLAB script that
was used for the analysis of reaction times in the pigeon paradigm was wrongly indexed

Technical Note

Notes on fiber length measurements: A case
study in the underbelly of open source
neuroscience

Claude | Bajada*®! o =, Robert E Smith ¢! 9, &, Svenja Caspers °

Show more

+ Add to Mendeley «& Share #3 Cite

§.2022.119738 » s and content 2

hitps://doi.org/10.1016 neuroima

Under a Creative Commons license » ® open access

Highlights
+ We present a case study where a feature request introduced a bug in a
neuroimaging software package

Nicola Chiapolini, July 11, 2023

Introduction

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

» standard python tools
» ipython magic commands
» mostly command line

Nicola Chiapolini, July 11, 2023

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, July 11, 2023 71748

Testing

Something you do anyway.

» run code and see if it crashes
» check if output makes sense
» run code with trivial input

> ...

8/48

Nicola Chiapolini, July 11, 2023

Formal Testing

» important part of modern software development
> unittest and integration tests

> tests written in parallel with code
» tests run frequently/automatically
> generate reports and statistics

[...]
replace predefined histogram ... ok
add a legend; change line color of last histogram to red ... ok

put title and axis labels ... ok

Ran 18 tests in 5.118s

0):
GoodBye!

Nicola Chiapolini, July 11, 2023 9/48

Benefits

» only way to trust your code
» faster development

» know where your bugs are
» fixing bugs will not (re)introduce others
» change code with out worrying about consistency

» encourages better code
» provides example/documentation

FAIL: test_result (test_fibonacci.FiboTest)
test 7th fibonacci number
Traceback (most recent call last):
File "test_fibonacci.py", line 18, in test_result
self .assertEqual (result, expect)
AssertionError: 21 !'= 13

Nicola Chiapolini, July 11, 2023 10/48

An Example

def remove(thelist, entry):
"t remove entry object from list """
for idx, item in enumerate(thelist):
if entry is item:
del thelist[idx]
break
else:
raise ValueError("Entry not in the list")

Assume we find this code in an old library of ours.

Nicola Chiapolini, July 11, 2023 10/48

An Example

def remove(thelist, entry):
"t remove entry object from list """
thelist.remove (entry)

We prefer to keep it simple! Everything fine, right?

Nicola Chiapolini, July 11, 2023

An Example

def remove(thelist, entry):
"t remove entry object from list """
thelist.remove (entry)

ERROR: test_remove_array (__main__.RemoveTest)
Traceback (most recent call last):
File "list_tests.py", line 19, in test_remove_array
lrm.remove(1l, x)
File ".../examples/list_removal.py", line 3, in remove
thelist.remove (entry)
ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()

11/48

Nicola Chiapolini, July 11, 2023

Start Testing

At the beginning, testing feels weird:

1. It's obvious that this code works
2. The tests are longer than the code
3. The test code is a duplicate of the real code

— it might take a while to get used to testing,
but it will pay off quiet rapidly.

Nicola Chiapolini, July 11, 2023

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, July 11, 2023 13/48

unittest

» library for unittests
» part of standard python
> at the level of other modern tools

Alternatives

> pytest

https://docs.pytest.org/en/latest/

Nicola Chiapolini, July 11, 2023 14/48

Anatomy of a TestCase

import unittest
class DemoTests(unittest.TestCase):

def test_boolean(self):
nnn- tests start with 'test’ """
self.assertTrue(True)
self.assertFalse(False)

def test_add(self):
"t docstring can be printed """
self.assertEqual(2+1, 3)

if __name__ == "__main__":
nnit-egecute all tests im module """
unittest.main()

apolini, July 11, 2023

Debug

Summary on Anatomy

Test Cases

» are subclass of unittest.TestCase
» group test units

Test Units

» methods, whose names start with test
» should cover one aspect

» check behaviour with "assertions"

» rise exception if assertion fails

Nicola Chiapolini, July 11, 2023 16/48

Running Tests

Option 1 execute all test units in all test cases of this file
if __name__ == "__main__":
unittest.main(verbosity=1)

python test_module.py

Option 2 Execute all tests in one file
python -m unittest [-v] test_module

Option 3 Discover all tests in all submodules

python -m unittest discover [-v]

Nicola Chiapolini, July 11, 2023 17/48

TestCase.assertSomething

» check boolean value

assertTrue('Hi'.islower()) # fail
assertFalse('Hi'.islower()) # pass

» check equality

assertEqual (2+1, 3) # pass
" assertEqual can compare all sorts of objects """
assertEqual ([2]+[1], [2, 11) # pass

» check numbers are close

from math import sqrt, pi

assertAlmostEqual (sqrt(2), 1.414, places=3) # pass
nin-yglues are rounded, mot truncated """
assertAlmostEqual (pi, 3.141, 3) # fail
assertAlmostEqual (pi, 3.142, 3) # pass

Nicola Chiapolini, July 11, 2023 18/48

TestCase.assertRaises

» most convenient with context managers
with self.assertRaises (ErrorType):
do_something ()
do_some_more ()

» Important: use most specific exception class

bad_file = "inexistent"
with self.assertRaises(FileNotFoundError): # raises NameError
open(bad_fil, 'r')

with self.assertRaises(Exception):
open(bad_fil, 'r') # pass

Nicola Chiapolini, July 11, 2023 19/48

TestCase.assertMoreThings

assertGreater(a, b)
assertLess(a, b)

assertRegex(text, regexp)
assertIn(value, sequence)
assertIsNone(value)
assertIsInstance (my_object, class)

assertCountEqual (actual, expected)

complete list at
https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Nicola Chiapolini, July 11, 2023 20/48

TestCase.assertNotSomething

Most of the assert methods have a Not version

assertEqual
assertNotEqual

assertAlmostEqual
assertNotAlmostEqual

assertIsNone
assertIsNotNone

Nicola Chiapolini, July 11, 2023

Testing with numpy

21/48

numpy arrays have to be compared elementwise

class SpecialCases(unittest.TestCase):
def test_numpy(self):
a = numpy.array([1, 2])
b = numpy.array([1, 2])
self .assertEqual(a, b)
ERROR: test_numpy (__main__.SpecialCases)
Traceback (most recent call last)

[..]
ValueError: The truth value
element is ambiguous. Use a.

of an array with more than one
any() or a.all()

Nicola Chiapolini, July 11, 2023 22/48

numpy.testing

» defines appropriate function

numpy . testing.assert_array_equal (x, y)
numpy . testing.assert_array_almost_equal(x, y, decimal=6)

» use numpy functions for more complex tests

numpy .all(x) # True tf all elements of = are true
numpy . any (x) # True 2f any of the elements of x is true
numpy.allclose(x, y) # True if element-wise close

Example

"t test that all elements of = are between 0 and 1 """
assertTrue(all(logical_and(x > 0.0, x < 1.0))

Nicola Chiapolini, July 11, 2023 23/48

Strategies for Testing

» What does a good test look like?
» What should | test?

» What is special for scientific code?

Nicola Chiapolini, July 11, 2023 24/48

What does a good test look like?

Given put system in right state

> create objects, initialise parameters, ...
» define expected result

When action(s) of the test
» one or two lines of code

Then compare result with expectation
> set of assertions

Nicola Chiapolini, July 11, 2023 25/48

What does a good test look like? — Example

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
string = 'HeLlO wOrld'
expected = 'hello world'

when
result = string.lower()

then
self.assertEqual (result,expected)

Nicola Chiapolini, July 11, 2023 26/48

What should | test?

» simple, general case
string = 'HelLl0 wOrld'

» corner cases
string = ''
string = 'hello'
string = '1+2=3'

often involves design decisions
> any exception you raise explicitly

» any special behaviour you rely on

Nicola Chiapolini, July 11, 2023 27/48

Reduce Overhead 1: Loops

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):

given
Each test case is a tuple (input, ezpected)
test_cases = [('HeLl0 wOrld', 'hello world'),
(‘hi', 'hi'),
(*123 ([7', '123 ([?"),
¢yt
for string, expected in test_cases:
run several subtests
when
output = string.lower()
then
self.assertEqual (output, expected)

Nicola Chiapolini, July 11, 2023 28/48

Reduce Overhead 1: Subtests

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
Each test case is a tuple (input, ezpected)
test_cases = [('HeLl0 wOrld', 'hello world'),
(‘hi', 'hi'),
(*123 ([7', '123 ([?"),
¢yl
for string, expected in test_cases:
with self.subTest(config = string):
when
output = string.lower()
then
self.assertEqual (output, expected)

Nicola Chiapolini, July 11, 2023 29/48

Reduce Overhead 2: Fixtures

> allow to use same setup/cleanup for several tests

» useful to

» create data set at runtime
» |oad data from file or database
» create mock objects

» available for test case as well as test unit

class FixureTestCase(unittest.TestCase):

Q@classmethod
def setUpClass(cls): # called at start of TestCase
def setUp(self): # called before each test

def tearDown(self): # called at end of each test

Nicola Chiapolini, July 11, 2023 30/48

What is special for scientific code?
often deterministic test cases very limited/impossible

Numerical Fuzzing

» generate random input (print random seed)
> still need to know what to expect

Know What You Expect

» use inverse function

» generate data from model

» add noise to known solutions

» test general routine with specific ones

» test optimised algorithm with brute-force approach

Nicola Chiapolini, July 11, 2023 31/48

Automated Fuzzying: Hypothesis (ot in standard library)

hypothesis generates test inputs according to given properties.

import unittest, numpy
from hypothesis import given, strategies as st

class SumTestCase(unittest.TestCase):
Ogiven(st.lists(st.integers(), min_size=2, max_size=2))

def test_sum(self, vals):
self.assertEqual(vals[0]+vals[1], numpy.sum(vals))

Why?

» cover large search-space (default 100 inputs)
» good for finding edge cases
» less manual work

https://hypothesis.works/

Nicola Chiapolini, July 11, 2023 32/48

Test Driven Development (TDD)

Tests First

» choose next feature
> write test(s) for feature
» write simplest code

Benefits

» forced to think about design before coding
» code is decoupled and easier to maintain
» you will notice bugs

DEMO

Nicola Chiapolini, July 11, 2023

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, July 11, 2023

doctest

> poor man’s unittest

35/48

» ensure docstrings are up-to-date

def add(a,b):
nntqdd two numbers

>>> add(40,2)
42

return at+b

python -m doctest [-v] my_doctest.py

Trying:
add (40,2)
Expecting:
42
ok
1 items had no tests:
my_doctest

1 items passed all tests:
1 tests in my_doctest.add
1 tests in 2 items.
1 passed and 0 failed.
Test passed.

Nicola Chiapolini, July 11, 2023 36/48

Code Coverage

» it's easy to leave part untested

» features activated by keyword
» code to handle exception

» coverage tools track the lines executed
coverage.py

» python script
» produces text and HTML reports

python -m coverage run test_file.py
python -m coverage report [-m] [--omit="/usr*"]

» not in standard library
get from https://coverage.readthedocs.io/en/latest/

https://coverage.readthedocs.io/en/latest/

DEMO

Nicola Chiapolini, July 11, 2023

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Debugging

» use tests to avoid bugs and limit ,search space”
» avoid print statements
» use debugger

pdb — the Python debugger

» command line based (but integrated in most IDEs)

» opens an interactive shell
> allows to
» stop execution anywhere in your code
» execute code step by step
» examine and change variables
» examine call stack

Nicola Chiapolini, July 11, 2023 40/48

Entering pdb

» enter at start of file
python -m pdb myscript.py

> enter at statement/function
import pdb
your code here
pdb.run(expression_string)

» enter at point in code
some code here
the debugger starts here
import pdb; pdb.set_trace()
rest of the code

» from ipython

%pdb # enter pdb on ezception
/debug # enter pdb after exception

DEMO

Nicola Chiapolini, July 11, 2023 42/48

Profile

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, July 11, 2023 43/48

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, July 11, 2023 43/48

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible

44/ 48

Nicola Chiapolini, July 11, 2023
timeit

» precise timing for function/expression
» test different versions of a code block
» easiest with ipython’s magic command

a**2 or pow(a,2)?
In [1]: a = 43563

In [2]: timeit pow(a,2)
80.9 ns +/- 2.59 ns per loop (... of 7 runs, 10,000,000 loops each)

In [3]: %timeit a*#*2
59.1 ns +/- 0.133 ns per loop (... of 7 runs, 10,000,000 loops each)

Nicola Chiapolini, July 11, 2023 45/48

cProfile & Pstats

Profiling identify where most time is spent
cProfile standard python module for profiling
pstats tool to look at profiling data

» run cProfile

python -m cProfile [-s cumtime] myscript.py
python -m cProfile [-o myscript.prof] myscript.py

» analyse output from shell
python -m pstats myscript.prof

stats # print statistics
sort # change sort order
callers # print callers
callees # print callees

Nicola Chiapolini, July 11, 2023 46/48

Non-Standard Tools

» pyprof2calltree and kcachegrind: open cProfile output in GUI

python -m cProfile -o myscript.prof myscript.py
pyprof2calltree -i myscript.prof -k

» pprofile: line-granularity profiler
pprofile3d myscript.py

pprofile3 -f callgrind -o myscript.prof myscript.py
kcachegrind myscript.prof

https://pypi.org/project/pyprof2calltree/
https://kcachegrind.github.io/html/Home.html
https://github.com/vpelletier/pprofile

DEMO

Nicola Chiapolini, July 11, 2023 48/48

Final Thoughts

» testing, debugging and profiling can help you a lot
» using the right tools makes life a lot easier
» python comes with good tools included

> it's as easy as it gets — there are no excuses

	Introduction
	Test
	unittest
	doctest & coverage
	coverage

	Debug
	pdb

	Profile
	timeit
	cProfile

