
Department of Physics Scientific Programming with PythonDepartment of Physics Scientific Programming with PythonDepartment of Physics Scientific Programming with Python

Test, Debug, Profile July 11, 2023

Exercises based on exercises from Pietro Berkes
Licence: CC-by-sa

Before you start: To practice good software development workflows, use git while working on these
exercises. To setup:

– create a suitable directory for this exercise
– initialise a git repository inside the new directory
– download the files cleanup.py and maxima.py from the lecture webpage.
– add the files to your repository

Remember to commit every significant change to the git repository with a meaningful message.

1 Writing a test suite [basic]

Goals: Write a test suite using the unittest module.

The file cleanup.py contains a function, cleanup to remove or replace unwanted characters in an input
string. Now create a file test_cleanup.py with a test suite for this function. Make sure your tests check
for the behaviour as documented in the docstring.

In the suite, write five test cases with one hardcoded pair of input and expected output each:

a) Test a general input with upper and lowercase letters, numbers and symbols (e.g. H3l1o W0r1d!).

b) Use a different allow-list (e.g. only digits) on the same or a different input.

c) Write a test that checks if really all characters from the default allow-list are returned unmodified
if no list is given as argument.

d) Pass a single character string to replace and check that illegal characters are replaced correctly.

e) Finally, test that cleanup raises a ValueError as documented, if replace contains more then one
element.

Once your tests are ready, adjust the code of cleanup and try to introduce a bug for each test. Check
that your test suite really catches the problems. You can also try to find bugs your test suite does not
detect yet and extend the test suite to cover these cases as well.

Nicola Chiapolini July 11, 2023

Test, Debug, Profile, Scientific Programming with Python 2023 2

2 Deceivingly simple function [intermediate]

Goals: General practice of debugging and unit testing using agile development techniques.

The file maxima.py contains a function, find_maxima, that finds local maxima in a list and returns their
indices. Please read the last sentence again: it returns the indices, not the values ;–)

a) Using ipython, test the function with these input arguments and others of your own invention until
you are satisfied that it does the right thing for typical cases (remember that the function returns
the indices of the maxima):

x = [0, 1, 2, 1, 2, 1, 0]

x = [-i**2 for i in range(-3, 4)]

x = [numpy.sin(2*alpha) for alpha in numpy.linspace(0, 5., 100)]

b) Now try with the following inputs:

x = [4, 2, 1, 3, 1, 2]

x = [4, 2, 1, 3, 1, 5]

x = [4, 2, 1, 3, 1]

For each bug you find, solve it using the agile programming strategy:

i. Isolate the bug using a debugger
ii. Write a new test case that reproduces the bug. Try to make the test case as simple as possible;

here, this means using the simplest input data that still triggers the bug
iii. Correct the code
iv. Make sure that all the tests pass

c) Run a coverage analysis on the tests; there should be at least one statement that is not covered.
Write a test that covers it and debug the code

d) You may think that the code is now clean and robust. . . Look at the output of the function for the
input list

x = [1, 2, 2, 1]

Does the output correspond to your intuition? Think about a reasonable default behaviour in this
situation, and meditate on how such a simple function can hide so many complications

e) Implement the “reasonable behaviour” you conceived in item (d) and document it in the docstring,
adding a new doctest. Make sure that your function handles these inputs correctly (include them in
the tests):

x = [1, 2, 2, 3, 1]

x = [1, 3, 2, 2, 1]

x = [3, 2, 2, 3]

Nicola Chiapolini July 11, 2023

Test, Debug, Profile, Scientific Programming with Python 2023 3

3 k-Means and numerical fuzzing [advanced]

Goals: Implement a learning algorithm and test it using numerical fuzzing techniques.

k-means clustering is a simple method to assign n-dimensional data points to k groups. Each group
is represented by the its mean value and data points are assigned to the closest mean. Figure 1 show
a two-dimensional example. A longer explanation can found on https://en.wikipedia.org/wiki/

K-means_clustering.

6 5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

4

5

Figure 1: Example of k-Mean clustering in two-dimensions with k = 2. Means are at (0, 0) and (−2, 1)

A straight forward approach to k-means clustering is to split the algorithm into two functions.

– A classification function that assigns data points to given mean values.
– A means function that calculates new mean values based on a given classification.

The optimal position of the means can then be determined by alternatingly calling these two functions.
Once classifying the data points according to the present means and once determining new mean values
based on the assigned data points.

a) Use the Test Driven Development methodology to implement this algorithm. You can start with
simple manually entered test data, but should also include tests with randomly generated data.

b) Check that your code adheres to Python standards using pycodestyle:

python3 -m pycodestyle kmeans.py

Improve your code until the checker is happy .

c) Scipy provides k-mean clustering in scipy.cluster.vq: https://docs.scipy.org/doc/scipy/

reference/cluster.vq.html. Once you are satisfied with your code, compare the results to the
Scipy implementation.

d) Profile your code in your profiler of choice and examine the results.

Nicola Chiapolini July 11, 2023

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://docs.scipy.org/doc/scipy/reference/cluster.vq.html
https://docs.scipy.org/doc/scipy/reference/cluster.vq.html

	Writing a test suite [basic]
	Deceivingly simple function [intermediate]
	k-Means and numerical fuzzing [advanced]

