Refugees
July 11, 2023

1 Pandas

o https://pandas.pydata.org

o very high-level data containers with corresponding functionality

« many useful tools to work with time-series (look at Series.rolling)

o many SQL-like data operations (group, join, merge)

o Interface to a large variety of file formats (see pd.read_[...] functions)

» additional package with data-interface/API to many data repositories (https://pandas-
datareader.readthedocs.io/en/latest /remote__data.html)

[1]: | import pandas as pd

1.1 Basic Data Structures
1.1.1 Series
One-dimensional ndarray with axis labels (called index).

Series can be created like an array

[2]: pd.Series([11,13,17,19,23])

[21: O 11
1 13
2 17
3 19
4 23

dtype: int64
or, if you want a special index

[3]: series = pd.Series([11,13,17,19,23], index=['a', 'b', 'c', 'd', 'e'])
print (series)

a 11
b 13
c 17
d 19
e 23

dtype: int64



[4] :
[4]:
[5]:

[5]:

[6]:

[7]:

[8]:

to get the content back you can use

series.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
series.values

array([11, 13, 17, 19, 23])
but the power of pandas lies in all the other attributes

#series. [TAB]

1.1.2 DataFrame
The primary pandas data structure.

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes.
(index: row labels, columns: column labels) Can be thought of as a dict-like container for Series
objects.

The easiest way to create a DataFrame is to read it from an input file (see later)

In addition there are many ways to create DataFrames manually. Most straight forward probably
is to use a dict of iterables. (Series, Lists, Arrays). Pandas tries to choose sensible indexes.

frame = pd.DataFrame({"primes": series, "fibo": [1,1,2,3,5], "0-4": range(5)})

print (frame)

primes fibo 0-4
a 11 1 0
b 13 1 1
c 17 2 2
d 19 3 3
e 23 5 4

2 Refugee Example

We now want to use pandas to work with data from the World Bank. My goal is to create a plot
showing the burden refugees put on different countries. For this we will plot the fraction of refugee
in a give countries population versus that countries GDP.

I  downloaded and extracted the following data-sets from the  Worldbank
website  manually: *  Refugee population by country or territory of asy-
lum: https://data.worldbank.org/indicator/SM.POP.REFG ~ *  Population, total:
https://data.worldbank.org/indicator/SP.POP.TOTL * GDP per capita (current US$):
https://data.worldbank.org/indicator /NY.GDP.PCAP.CD



[9]:

[10]:

[11]:

[11]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2.1 Loading and Accessing Data

loading a data file with pandas is trivial

refugees = pd.read_csv("data/refugee-population.csv", skiprows=4)

refugees.head()
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As you can see pandas choose the right column labels and numbered the rows continously.

We can easily change the row labels (the index) to one of the columns.

refugees.set_index(["Country Code"], inplace=True)

refugees.head()
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[6 rows x 67

columns]

Now it’s easy to select rows or columns

[14]: refugees.loc[["CHE","DEU"]]

[14]:

[15]:

[15]:

[16]:

[16]:
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refugees[["1990","2000"]] .head ()
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refugees.get (["1990","2000"]) .head ()
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AFE 4709569.0 2444941.0

AFG 50.0 NaN
AFW 932052.0  968325.0
AGO 11657.0 12086.0

2.2 Working with a Single Country

With this we now choose the data for one country, remove all missing values and then create a plot:

[17]: che = refugees.loc["CHE"] [[str(year) for year in range(1990,2023)]]

[18]: | che.dropna() .plot ()
plt.show()
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Usually it is easier to work with real datetime objects instead of strings. So we convert the index
to datetime

[19]: che.index.values

[19]: array(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
'2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',



'2022'], dtype=object)

[20]: che.index = pd.to_datetime(che.index, format="%Y")
print(che.index)

DatetimeIndex(['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01"',
'1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01',
'1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01',
'2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01',
'2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
'2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
'2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01',
'2018-01-01', '2019-01-01', '2020-01-01', '2021-01-01',
'2022-01-01'],

dtype='datetime64[ns]', freq=None)

As mentioned in the introduction, pandas offers a very usefull rolling method

[21]: che.plot()
che.rolling(center=False,window=5) .mean() .plot ()
plt.show()
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[24] :

[25] :

[26] :
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2.3 Removing Unwanted Data

We now want to create a scatter plot with refugees divided by population vs. gdp-per-captita. For
each data set we will use the mean of the last 5 years.

Some of the rows and columns in the World-Bank Files are of no interest for this. We can remove
these easily.
2.3.1 Excluding Non-Countries

The World-Bank provides meta-data for each country, where we can identify rows with non-
countries (e.g. regional aggregates)

'head data/metadata-countries_population.csv

"AFG","South Asia","Low income","The reporting period for national accounts data
is designated as either calendar year basis (CY) or fiscal year basis (FY). For
this country, it is fiscal year-based (fiscal year-end: March 20). Also, an
estimate (PA.NUS.ATLS) of the exchange rate covers the same period and thus
differs from the official exchange rate (CY).

We load this file and extract the two relevant columns
meta = pd.read_csv("data/metadata-countries_population.csv")
meta.columns
Index(['Country Code', 'Region', 'IncomeGroup', 'SpecialNotes', 'TableName',
'Unnamed: 5'],
dtype='object')

meta = meta[['Country Code', 'Region']]

meta.head()

Country Code Region
0 ABW Latin America & Caribbean
1 AFE NaN
2 AFG South Asia
3 AFW NaN
4 AGO Sub-Saharan Africa



[27]: meta.set_index("Country Code", inplace=True)

From this we create a list of non-countries

[28]: non_countries = meta.loc[meta.Region.isnull()].index
print(non_countries)

Index(['AFE', 'AFW', 'ARB', 'CEB', 'CSS', 'EAP', 'EAR', 'EAS', 'ECA', 'ECS',
'EMU', 'EUU', 'FCS', 'HIC', 'HPC', 'IBD', 'IBT', 'IDA', 'IDB', 'IDX',
'LAC', 'LCN', 'LDC', 'LIC', 'LMC', 'LMY', 'LTE', 'MEA', 'MIC', 'MNA',
'NAC', 'OED', 'OSS', 'PRE', 'PSS', 'PST', 'SAS', 'SSA', 'SSF', 'SST',
'TEA', 'TEC', 'TLA', 'TMN', 'TSA', 'TSS', 'UMC', 'WLD'],
dtype='object', name='Country Code')
and finally exclude the relevant rows

[29]: refugees = refugees.drop(non_countries)

2.3.2 Excluding Columns

The data contains a few rows with unneeded text

[30]: refugees.columns

[30]: Index(['Country Name', 'Indicator Name', 'Indicator Code', '1960', '1961',
'1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',
'1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979',
'1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',
'1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
'2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
'2016', '2017', '2018', '2019', '2020', '2021', '2022', 'Unnamed: 67'],
dtype="'object')

In addition, the last column might be missig a lot of data
[31]: np.sum(refugees["2022"] .notnull())
[31]: 163

so we can create a list of all interesting columns

[32]: useful_cols = []
last_year = 2022 # depending on output above
for year in range(last_year-5,last_year+1):
useful_cols.append(str(year))

[33]: useful_cols

[33]: ['2017', '2018', '2019', '2020', '2021', '2022']



with this, we:

o select the reduced dataset
o switch the index to Country Code
o calculate the mean for each country

[34]: refugees = refugees[useful_cols]

[35]: refugee_means = refugees.mean(axis=1)

2.4 Loading Additional Files

Of course we could execute these commands again manually for the two remaining data-files.
However, the proper way to solve this is to create a function for this. Especially since all files have
the exact same structure.

[36]: def load_file(file):
"""Load and process a Worldbank File
data = pd.read_csv(file, skiprows=4)
data.set_index("Country Code", inplace=True)

nimnn

data.drop(non_countries, inplace=True)
data = datal[useful_cols]
return data.mean(axis=1), data

[37]: gdp_means, gdp = load_file("data/gdp-per-capita.csv")
[38]: gdp_means.head()

[38]: Country Code
ABW 29195.590031

AFG 482.654165
AGO 2219.687217
ALB 5622.992095

AND 41023.002828
dtype: float64

[39]: gdp.head()

[39]: 2017 2018 2019 2020 \

Country Code

ABW 29326.708058 30918.515218 31902.762582 24487.863569
AFG 530.149863 502.057099 500.522981 516.866797
AGO 2283.214233  2487.500996  2142.238757  1502.950754
ALB 4531.032207  5287.660817  5396.214227  5343.037704
AND 40632.2315564 42904.828456 41328.600499 37207.222000

2021 2022

Country Code
ABW 29342.100730 NaN
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AFG 363.674087 NaN

AGO 1903.717405  2998.501158
ALB 6377.203096  6802.804519
AND 42072.341103 41992.793358

[40] : population_means, population = load_file("data/population.csv")

2.5 Creating the Plot

We now combine our three Series with means into one DataFrame and create our plot.

[41]: data = pd.DataFrame({"gdp": gdp_means, "refugees": refugee_means/
~population_means}) .dropna()

(Here we loose some countries with missing data.)

[42] : data.plot.scatter("gdp", "refugees")
plt.show()
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We can quickly find out who the three top countries are:

[43]: data.where(data["refugees"]>0.1) .dropna()
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[43]: gdp refugees
Country Code

JOR 4103.047067 0.277147
LBN 7313.453707 0.239103
PSE 3590.180327 0.491745

To improve readability:

o we switch to a log-log axis (we need to exclude countries with too small refugee numbers)
e we highlight one selected country
o We add a title

[44]: ax = datal[data["refugees"] > 1le-10].plot.scatter(y="refugees", x="gdp",,
~loglog=True)
ax = data.loc[["CHE"]] .plot.scatter(y="refugees", x="gdp", ax=ax, color="r",
~label="Switzerland")
plt.title("refugees fraction vs. gdp")

plt.show()
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again we can print the info for one country
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[45] :

[45] :

[46] :

[47]:

[47] :

[48]:

data.loc["CHE"]

gdp
refugees

2.5.1 Highlighting a Full Region

86890.390629
0.014023
Name: CHE, dtype: float64

Based on the meta data provided by the World Bank, we can highlight a region

europe = meta.loc[meta.Region == "Europe & Central Asia"].index

europe[:

10]

Index(['ALB',
dtype='object', name='Country Code')

'"AND',

"ARM', 'AUT',

"AZE',

'BEL',

'BGR', 'BIH'

, 'BLR',

'CHE'],

ax = dataldata["refugees"] > 1e-10].plot.scatter(y="refugees", x="gdp",.

~loglog=True)

ax = data.loc[data.index.intersection(europe)] .plot.scatter(y="refugees",
wx="gdp", ax=ax, color="r", label="Europe & Central Asia")

plt.title("refugees fraction vs. gdp")

plt.show()
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(As we lost some countries with missing data when we called dropna above, we need the
data.index.intersection-call to select only country codes really contained in our data.)

2.6 Fitting

We now look at a tiny subset of this data and look at ways to fit a function to it.

Scipy preparse a huge number of options, we will look at three options of increasing complexity
and flexibility.

2.6.1 Preparations

first we select our subset

[49] : | europe_small = ['AUT',

'DEU',
'FRA',
'"ITA',
]
[60]: data_eu = data.loc[europe_small].dropna()
data_eu
[50]: gdp refugees
Country Code
AUT 50590.749602 0.017460
DEU 47632.398320 0.015473
FRA 40751.983647 0.006578
ITA 33758.229029 0.003165

[61]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
plt.title("refugees fraction vs. gdp")
plt.show()
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[53]:

[54]:

[55]:

refugees fraction vs. gdp
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and we create a vector with all the x values we will need to plot our fit result

x = np.linspace(data_eu["gdp"] .min(), data_eu["gdp"].max(), 100)

2.6.2 polyfit
Polyfit is probably the easiest way to fit a polynome to given data.

from numpy import polyfit, polyval

res = polyfit(data_eul["gdp"], data_eu["refugees"],1)
print(res)

[ 8.99316549e-07 -2.81665523e-02]

ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, polyval(res, x))

plt.title("refugees fraction vs. gdp")

plt.show()
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2.6.3 curve_ fit

With curve_fit you can define a complex fit function.

[66]: from scipy.optimize import curve_fit

[67]: def fit_function(x,b,c):
return b*x+c

[68]: res = curve_fit(fit_function, data_eu["gdp"], data_eu["refugees"])
print(res)

(array ([ 8.99316549e-07, -2.81665522e-02]), array([[ 1.54432316e-14,
-6.66890325e-10],
[-6.66890325e-10, 2.94526038e-05]1))

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, *(res[0])))
plt.title("refugees fraction vs. gdp")
plt.show()
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2.6.4 leastsq

Finally, least-squares allows you to even specify the cost function. With this you can factor in
uncertainties or weights for your data points.

[60]: from scipy.optimize import leastsq

[61]: def fit_function(x, p):
return x*p[0]+p[1]

[62]: def error_function(params):
return data_eu["refugees"] - fit_function(data_eul["gdp"], params)

[63]: res = leastsq(error_function, [0,0])
print(res)

(array ([ 8.99316549e-07, -2.81665523e-02]), 3)

[64]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, res[0]))
plt.title("refugees fraction vs. gdp")
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plt.show()
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2.6.5 statsmodels

[65]: import statsmodels.formula.api as smf
[66]: res = smf.ols("refugees ~ gdp", data=data_eu).fit()
[67]: print(res.summary())

OLS Regression Results

Dep. Variable: refugees  R-squared: 0.963
Model: OLS Adj. R-squared: 0.945
Method: Least Squares F-statistic: 52.37
Date: Tue, 11 Jul 2023 Prob (F-statistic): 0.0186
Time: 12:17:35 Log-Likelihood: 21.418
No. Observations: 4  AIC: -38.84
Df Residuals: 2  BIC: -40.06
Df Model: 1
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Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -0.0282 0.005 -5.190 0.035 -0.052 -0.005
gdp 8.993e-07 1.24e-07 7.237 0.019 3.65e-07 1.43e-06
Omnibus: nan Durbin-Watson: 3.069
Prob(Omnibus) : nan Jarque-Bera (JB): 0.688
Skew: -0.913 Prob(JB): 0.709
Kurtosis: 2.112 Cond. No. 2.93e+05

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

[2] The condition number is large, 2.93e+05. This might indicate that there are
strong multicollinearity or other numerical problems.

/usr/1ib/python3/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning:
omni_normtest is not valid with less than 8 observations; 4 samples were given.
warn("omni_normtest is not valid with less than 8 observations; %i "

[68]: print(res.params)

Intercept -2.816655e-02
gdp 8.993165e-07
dtype: float64

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, res.params[1]*x+res.params[0])
plt.title("refugees fraction vs. gdp")
plt.show()
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2.7 Appendix: Selecting from DataFrames
2.7.1 Accessing Rows

Passing a single value to loc returns a Series

[70]: frame.loc["a"]

[70]: primes 11
fibo 1
0-4 0
Name: a, dtype: int64

Passing a list to loc returns a DataFrame (even if the list contains a single a single value)

[71]: frame.loc[["a"]1]

[71]: primes fibo 0-4
a 11 1 0

[72]: | frame.loc[["a","c"]]
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[72]:

[73]:

[73]:

[74]:

[74] :

[75]:

[75]:

[76]:

[76]:

[77]:

[77]:

[78]:

primes fibo
11 1
c 17 2

Also slicing works (but includes the upper boundary)

0-4
0
2

frame.loc["b":"d"]

primes fibo

13 1
c 17 2
d 19 3

0-4
1
2
3

A list of boolean values with n-Rows entries, is considered a mask to select rows

frame.loc[[True,False,True,False,Truel]

primes fibo

11 1
c 17 2
23 5

Instead of a list,

0-4
0
2
4

a boolean-series can be used.

Rows are matched on the

(frame[["primes"]] > 20 would not work as this returns a frame instead of a series.)

frame.loc[frame["primes"] > 20]

primes fibo
e 23 5

When using a mask, .loc is optional (but recommended to avoid confusion with columns).

frame[frame["primes"] > 20]

primes fibo
e 23 5

0-4
4

0-4
4

Using iloc it is possible to access rows by position as well. (without using the index)

frame.iloc[2:-1]

primes fibo
c 17 2
d 19 3

2.7.2 Accessing Columns

0-4
2
3

The frame is subscripted directly. Again, passing a singel value returns a series.

frame["primes"]
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[78]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64
While a list returns a DataFrame

[79]: frame[["primes"]]

[79]: primes
11
13
17
19
23

O Q& 0 T W

[80]: frame[["primes","0-4"]]

[80]: primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

Instead of subscripting, the get-method can be used.

[81]: frame.get(["primes","0-4"])

[81]: primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

For single columns, an attribute with the same name exists

[82]: frame.primes

[82]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64

But this fails, if the column-name is not a valid attribute-name
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[83]: | # Raises SyntazError
#frame.0-4

For even more options have a look at the pandas-website: https://pandas.pydata.org/pandas-
docs/stable/indexing.html
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