Refugees
July 11, 2023

1 Pandas

o https://pandas.pydata.org

o very high-level data containers with corresponding functionality

« many useful tools to work with time-series (look at Series.rolling)

o many SQL-like data operations (group, join, merge)

o Interface to a large variety of file formats (see pd.read_[...] functions)

» additional package with data-interface/API to many data repositories (https://pandas-
datareader.readthedocs.io/en/latest /remote__data.html)

[1]: | import pandas as pd

1.1 Basic Data Structures
1.1.1 Series
One-dimensional ndarray with axis labels (called index).

Series can be created like an array

[2]: pd.Series([11,13,17,19,23])

[21: O 11
1 13
2 17
3 19
4 23

dtype: int64
or, if you want a special index

[3]: series = pd.Series([11,13,17,19,23], index=['a', 'b', 'c', 'd', 'e'])
print (series)

a 11
b 13
c 17
d 19
e 23

dtype: int64

[4] :
[4]:
[5]:

[5]:

[6]:

[7]:

[8]:

to get the content back you can use

series.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
series.values

array([11, 13, 17, 19, 23])
but the power of pandas lies in all the other attributes

#series. [TAB]

1.1.2 DataFrame
The primary pandas data structure.

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes.
(index: row labels, columns: column labels) Can be thought of as a dict-like container for Series
objects.

The easiest way to create a DataFrame is to read it from an input file (see later)

In addition there are many ways to create DataFrames manually. Most straight forward probably
is to use a dict of iterables. (Series, Lists, Arrays). Pandas tries to choose sensible indexes.

frame = pd.DataFrame({"primes": series, "fibo": [1,1,2,3,5], "0-4": range(5)})

print (frame)

primes fibo 0-4
a 11 1 0
b 13 1 1
c 17 2 2
d 19 3 3
e 23 5 4

2 Refugee Example

We now want to use pandas to work with data from the World Bank. My goal is to create a plot
showing the burden refugees put on different countries. For this we will plot the fraction of refugee
in a give countries population versus that countries GDP.

I downloaded and extracted the following data-sets from the Worldbank
website manually: * Refugee population by country or territory of asy-
lum: https://data.worldbank.org/indicator/SM.POP.REFG ~ * Population, total:
https://data.worldbank.org/indicator/SP.POP.TOTL * GDP per capita (current US$):
https://data.worldbank.org/indicator /NY.GDP.PCAP.CD

[9]:

[10]:

[11]:

[11]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2.1 Loading and Accessing Data

loading a data file with pandas is trivial

refugees = pd.read_csv("data/refugee-population.csv", skiprows=4)

refugees.head()

s W N - O

Refugee
Refugee
Refugee
Refugee
Refugee

> W NN -, O

1961 1
NaN
NaN
NaN
NaN
NaN

s W NN - O

20

5155400
75927
1172523
41119

S W N ~- O

Unnamed:

S W N - O

population
population
population
population
population

962
NaN
NaN
NaN
NaN
NaN

17

NaN

.0
.0
.0
.0

67
NaN
NaN
NaN

NaN
NaN

Country Name Country Code

Afghan

A

by
by
by
by
by

1963
NaN
NaN
NaN
NaN
NaN

1964
NaN
NaN
NaN
NaN
NaN

2018
NaN

5114399.0

72228.0

1285773.0

39856.0

[5 rows x 68 columns]

Aruba

Africa Eastern and Southern

istan

Africa Western and Central

ngola

country
country
country
country
country

1965
NaN
NaN
NaN
NaN
NaN

2019

NaN
5087755.0
72227.0
1315229.0
25793.0

ABW
AFE
AFG
AFW
AGO

Indicator Name Indicator Code

territory
territory
territory
territory
territory

2014

NaN
2637640.0
300421.0
1108169.0
15468.0

2020

NaN
5183533.0
72278.0
1474135.0
25791.0

of ..
of ..
of ..
of ..
of ..

SM
SM
SM
SM
SM

2015

NaN
3333273.0
257553.0
1138010.0
15547.0

2021

NaN
5436720.0
66949.0
1631057.0
26045.0

.POP.REFG
.POP.REFG
.POP.REFG
.POP.REFG
.POP.REFG

2016

NaN
3990478.0
59770.0
1200854.0
15547.0

2022

NaN
5412266.0
52159.0
1705777.0
25514.0

1960 \
NaN
NaN
NaN
NaN
NaN

[12]:

[13]:

[13]:

As you can see pandas choose the right column labels and numbered the rows continously.

We can easily change the row labels (the index) to one of the columns.

refugees.set_index(["Country Code"], inplace=True)

refugees.head()

Country Code
ABW
AFE
AFG
AFW
AGO

Country Code
ABW
AFE
AFG
AFW
AGO

Country Code
ABW
AFE
AFG
AFW
AGO

Country Code
ABW
AFE
AFG
AFW
AGO

Country Code
ABW
AFE
AFG
AFW
AGO

Country Name \

Aruba

Africa Eastern and Southern
Afghanistan
Africa Western and Central
Angola

Refugee population
Refugee population
Refugee population
Refugee population
Refugee population

Indicator Code

by
by
by
by
by

1960

country
country
country
country
country

1961 1962

Indicator Name \

territory
territory
territory
territory
territory

1963 1964

SM.
SM.
SM.
SM.
SM.

POP.REFG
POP.REFG
POP.REFG
POP.REFG
POP.REFG

NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN

2014

NaN
2637640.0
300421.0
1108169.0
15468.0

2019

NaN
5087755.0
72227.0
1315229.0
25793.0

2015

NaN
3333273.0
257553.0
1138010.0
15547.0

2020

NaN
5183533.0
72278.0
1474135.0
25791.0

2016

NaN
3990478.0
59770.0
1200854.0
15547.0

2021

NaN
5436720.0
66949.0
1631057.0
26045.0

2017

NaN
5155400.0
75927.0
1172523.0
41119.0

2022

NaN
5412266.0
52159.0
1705777.0
25514.0

of .
of .
of .
of .
of .

1965 1966
NaN NaN
NaN NaN
NaN NaN
NaN NaN
NaN NaN

2018 \
NaN
5114399.0
72228.0
1285773.0
39856.0

Unnamed: 67

NaN

NaN

NaN

NaN

NaN

[6 rows x 67

columns]

Now it’s easy to select rows or columns

[14]: refugees.loc[["CHE","DEU"]]

[14]:

[15]:

[15]:

[16]:

[16]:

Country Code
CHE
DEU

Country Code
CHE
DEU

Country Code
CHE
DEU

Country Code
CHE
DEU

Country Code
CHE
DEU

[2 rows x 67

Country Name

Indicator Name \

Switzerland Refugee population by country or territory of ..
Germany Refugee population by country or territory of ..

Indicator Co

SM.POP.RE
SM.POP.RE

1965

20000.0
180000.0 1

2018

104011.0
1063835.0

Unnamed: 67

NaN
NaN

columns]

de

FG
FG

1966

20500.0
40000.0

2019

110162.0
1146682.0

refugees[["1990","2000"]] .head ()

Country Code
ABW
AFE
AFG
AFW
AGO

refugees.get (["1990","2000"]) .head ()

Country Code
ABW

1990

NaN
4709569.0
50.0
932052.0
11557.0

1990

NaN

2000

NaN
2444941.0
NaN
968325.0
12086.0

2000

NaN

1960

20000.0
197000.0

1961

20000.0
190000.0

2014

62596.0

1962 1963 1964 \
20000.0

182000.0

20000.0
180000.0

20000.0
185000.0

2015 2016 2017 '\

73326.0 82668.0 93030.0

216956.0 316098.0 669468.0 970357.0

2020

1156798.0
1210596.0

2021 2022\

118829.0 182474.0
1256694.0 2075445.0

AFE 4709569.0 2444941.0

AFG 50.0 NaN
AFW 932052.0 968325.0
AGO 11657.0 12086.0

2.2 Working with a Single Country

With this we now choose the data for one country, remove all missing values and then create a plot:

[17]: che = refugees.loc["CHE"] [[str(year) for year in range(1990,2023)]]

[18]: | che.dropna() .plot ()
plt.show()

180000

160000

140000

120000

100000

80000 +

60000

40000

T T T T T T T
1990 1995 2000 2005 2010 2015 2020

Usually it is easier to work with real datetime objects instead of strings. So we convert the index
to datetime

[19]: che.index.values

[19]: array(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
'2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',

'2022'], dtype=object)

[20]: che.index = pd.to_datetime(che.index, format="%Y")
print(che.index)

DatetimeIndex(['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01"',
'1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01',
'1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01',
'2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01',
'2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
'2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
'2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01',
'2018-01-01', '2019-01-01', '2020-01-01', '2021-01-01',
'2022-01-01'],

dtype='datetime64[ns]', freq=None)

As mentioned in the introduction, pandas offers a very usefull rolling method

[21]: che.plot()
che.rolling(center=False,window=5) .mean() .plot ()
plt.show()

180000

160000

140000

120000

100000

80000 +

60000

40000 A

L e . R S [B B R B B S S B R B B R I
1990 1995 2000 2005 2010 2015 2020

[22]:

[23]:

[24]:

[24] :

[25] :

[26] :

[26]:

2.3 Removing Unwanted Data

We now want to create a scatter plot with refugees divided by population vs. gdp-per-captita. For
each data set we will use the mean of the last 5 years.

Some of the rows and columns in the World-Bank Files are of no interest for this. We can remove
these easily.
2.3.1 Excluding Non-Countries

The World-Bank provides meta-data for each country, where we can identify rows with non-
countries (e.g. regional aggregates)

'head data/metadata-countries_population.csv

"AFG","South Asia","Low income","The reporting period for national accounts data
is designated as either calendar year basis (CY) or fiscal year basis (FY). For
this country, it is fiscal year-based (fiscal year-end: March 20). Also, an
estimate (PA.NUS.ATLS) of the exchange rate covers the same period and thus
differs from the official exchange rate (CY).

We load this file and extract the two relevant columns
meta = pd.read_csv("data/metadata-countries_population.csv")
meta.columns
Index(['Country Code', 'Region', 'IncomeGroup', 'SpecialNotes', 'TableName',
'Unnamed: 5'],
dtype='object')

meta = meta[['Country Code', 'Region']]

meta.head()

Country Code Region
0 ABW Latin America & Caribbean
1 AFE NaN
2 AFG South Asia
3 AFW NaN
4 AGO Sub-Saharan Africa

[27]: meta.set_index("Country Code", inplace=True)

From this we create a list of non-countries

[28]: non_countries = meta.loc[meta.Region.isnull()].index
print(non_countries)

Index(['AFE', 'AFW', 'ARB', 'CEB', 'CSS', 'EAP', 'EAR', 'EAS', 'ECA', 'ECS',
'EMU', 'EUU', 'FCS', 'HIC', 'HPC', 'IBD', 'IBT', 'IDA', 'IDB', 'IDX',
'LAC', 'LCN', 'LDC', 'LIC', 'LMC', 'LMY', 'LTE', 'MEA', 'MIC', 'MNA',
'NAC', 'OED', 'OSS', 'PRE', 'PSS', 'PST', 'SAS', 'SSA', 'SSF', 'SST',
'TEA', 'TEC', 'TLA', 'TMN', 'TSA', 'TSS', 'UMC', 'WLD'],
dtype='object', name='Country Code')
and finally exclude the relevant rows

[29]: refugees = refugees.drop(non_countries)

2.3.2 Excluding Columns

The data contains a few rows with unneeded text

[30]: refugees.columns

[30]: Index(['Country Name', 'Indicator Name', 'Indicator Code', '1960', '1961',
'1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',
'1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979',
'1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',
'1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
'2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
'2016', '2017', '2018', '2019', '2020', '2021', '2022', 'Unnamed: 67'],
dtype="'object')

In addition, the last column might be missig a lot of data
[31]: np.sum(refugees["2022"] .notnull())
[31]: 163

so we can create a list of all interesting columns

[32]: useful_cols = []
last_year = 2022 # depending on output above
for year in range(last_year-5,last_year+1):
useful_cols.append(str(year))

[33]: useful_cols

[33]: ['2017', '2018', '2019', '2020', '2021', '2022']

with this, we:

o select the reduced dataset
o switch the index to Country Code
o calculate the mean for each country

[34]: refugees = refugees[useful_cols]

[35]: refugee_means = refugees.mean(axis=1)

2.4 Loading Additional Files

Of course we could execute these commands again manually for the two remaining data-files.
However, the proper way to solve this is to create a function for this. Especially since all files have
the exact same structure.

[36]: def load_file(file):
"""Load and process a Worldbank File
data = pd.read_csv(file, skiprows=4)
data.set_index("Country Code", inplace=True)

nimnn

data.drop(non_countries, inplace=True)
data = datal[useful_cols]
return data.mean(axis=1), data

[37]: gdp_means, gdp = load_file("data/gdp-per-capita.csv")
[38]: gdp_means.head()

[38]: Country Code
ABW 29195.590031

AFG 482.654165
AGO 2219.687217
ALB 5622.992095

AND 41023.002828
dtype: float64

[39]: gdp.head()

[39]: 2017 2018 2019 2020 \

Country Code

ABW 29326.708058 30918.515218 31902.762582 24487.863569
AFG 530.149863 502.057099 500.522981 516.866797
AGO 2283.214233 2487.500996 2142.238757 1502.950754
ALB 4531.032207 5287.660817 5396.214227 5343.037704
AND 40632.2315564 42904.828456 41328.600499 37207.222000

2021 2022

Country Code
ABW 29342.100730 NaN

10

AFG 363.674087 NaN

AGO 1903.717405 2998.501158
ALB 6377.203096 6802.804519
AND 42072.341103 41992.793358

[40] : population_means, population = load_file("data/population.csv")

2.5 Creating the Plot

We now combine our three Series with means into one DataFrame and create our plot.

[41]: data = pd.DataFrame({"gdp": gdp_means, "refugees": refugee_means/
~population_means}) .dropna()

(Here we loose some countries with missing data.)

[42] : data.plot.scatter("gdp", "refugees")
plt.show()

0.5 1 ™

0.4

0.3 +

refugees
L]

0.1 A
L
L

0.0 - h‘h,:- e . . .

T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 200000
gdp

We can quickly find out who the three top countries are:

[43]: data.where(data["refugees"]>0.1) .dropna()

11

[43]: gdp refugees
Country Code

JOR 4103.047067 0.277147
LBN 7313.453707 0.239103
PSE 3590.180327 0.491745

To improve readability:

o we switch to a log-log axis (we need to exclude countries with too small refugee numbers)
e we highlight one selected country
o We add a title

[44]: ax = datal[data["refugees"] > 1le-10].plot.scatter(y="refugees", x="gdp",,
~loglog=True)
ax = data.loc[["CHE"]] .plot.scatter(y="refugees", x="gdp", ax=ax, color="r",
~label="Switzerland")
plt.title("refugees fraction vs. gdp")

plt.show()
refugees fraction vs. gdp
'- ® Switzerland
i L]
_1 .
10 E .r
°%. o o
1072 4 s ° . “e L . - ¢ S
i e se® o o, . " 'f‘ oL A
] -- * 2 - []
] L L] d'-
(] L
0 1073 4 "..;.i °® -"- °a o ® .
% E L] o L] : o I- . L] L]
= E L]
T 1 o [
= 1074 3 ¢ o *% N “' ° L -'l *
E * ® ® e °
E . . @ 1- ™ o
] . °t ™ L, e e
lO'EE LI L * .
] ¢ L] 2 .
1075 3
3 .
10° 10% 10°
gdp

again we can print the info for one country

12

[45] :

[45] :

[46] :

[47]:

[47] :

[48]:

data.loc["CHE"]

gdp
refugees

2.5.1 Highlighting a Full Region

86890.390629
0.014023
Name: CHE, dtype: float64

Based on the meta data provided by the World Bank, we can highlight a region

europe = meta.loc[meta.Region == "Europe & Central Asia"].index

europe[:

10]

Index(['ALB',
dtype='object', name='Country Code')

'"AND',

"ARM', 'AUT',

"AZE',

'BEL',

'BGR', 'BIH'

, 'BLR',

'CHE'],

ax = dataldata["refugees"] > 1e-10].plot.scatter(y="refugees", x="gdp",.

~loglog=True)

ax = data.loc[data.index.intersection(europe)] .plot.scatter(y="refugees",
wx="gdp", ax=ax, color="r", label="Europe & Central Asia")

plt.title("refugees fraction vs. gdp")

plt.show()

refugees

refugees fraction vs. gdp

o ® Europe & Central Asia
. .
L]
L ¢
° ’ ® ee ¢ 4 ' 4
¢ :--i s e :: '-f‘ -v-'u * e
o ‘1& ¢ L o -' i'-
s @ . s "L . ‘ ' . ol By *
L] o L] : I o I- . L] L]
L]
g
¢ L] -- “ “- ¢ ---' l L
] .] P s
. . @ 1- ™ o
™ -- . Zlg e L] . []
L L ¢ .
® . . .
L]
103 104 10°
gdp

13

(As we lost some countries with missing data when we called dropna above, we need the
data.index.intersection-call to select only country codes really contained in our data.)

2.6 Fitting

We now look at a tiny subset of this data and look at ways to fit a function to it.

Scipy preparse a huge number of options, we will look at three options of increasing complexity
and flexibility.

2.6.1 Preparations

first we select our subset

[49] : | europe_small = ['AUT',

'DEU',
'FRA',
'"ITA',
]
[60]: data_eu = data.loc[europe_small].dropna()
data_eu
[50]: gdp refugees
Country Code
AUT 50590.749602 0.017460
DEU 47632.398320 0.015473
FRA 40751.983647 0.006578
ITA 33758.229029 0.003165

[61]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
plt.title("refugees fraction vs. gdp")
plt.show()

14

[52]:

[53]:

[54]:

[55]:

refugees fraction vs. gdp

0.018 A

0.016 ~

0.014 ~

0.012 ~

0.010 ~

refugees

0.008 ~

0.006 ~

0.004 ~

T T T T T T
35000 37500 40000 42500 45000 47500
gdp

and we create a vector with all the x values we will need to plot our fit result

x = np.linspace(data_eu["gdp"] .min(), data_eu["gdp"].max(), 100)

2.6.2 polyfit
Polyfit is probably the easiest way to fit a polynome to given data.

from numpy import polyfit, polyval

res = polyfit(data_eul["gdp"], data_eu["refugees"],1)
print(res)

[8.99316549e-07 -2.81665523e-02]

ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, polyval(res, x))

plt.title("refugees fraction vs. gdp")

plt.show()

15

T
50000

refugees fraction vs. gdp

0.018 +

0.016 ~

0.014 ~

0.012 ~

0.010 ~

refugees

0.008 ~

0.006 ~

0.004 ~

0.002 ~

T T T T T T T
35000 37500 40000 42500 45000 47500 50000
gdp

2.6.3 curve_ fit

With curve_fit you can define a complex fit function.

[66]: from scipy.optimize import curve_fit

[67]: def fit_function(x,b,c):
return b*x+c

[68]: res = curve_fit(fit_function, data_eu["gdp"], data_eu["refugees"])
print(res)

(array ([8.99316549e-07, -2.81665522e-02]), array([[1.54432316e-14,
-6.66890325e-10],
[-6.66890325e-10, 2.94526038e-05]1))

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, *(res[0])))
plt.title("refugees fraction vs. gdp")
plt.show()

16

refugees fraction vs. gdp

0.018 +

0.016 ~

0.014 ~

0.012 ~

0.010 ~

refugees

0.008 ~

0.006 ~

0.004 ~

0.002 ~

T T T T T T T
35000 37500 40000 42500 45000 47500 50000
gdp

2.6.4 leastsq

Finally, least-squares allows you to even specify the cost function. With this you can factor in
uncertainties or weights for your data points.

[60]: from scipy.optimize import leastsq

[61]: def fit_function(x, p):
return x*p[0]+p[1]

[62]: def error_function(params):
return data_eu["refugees"] - fit_function(data_eul["gdp"], params)

[63]: res = leastsq(error_function, [0,0])
print(res)

(array ([8.99316549e-07, -2.81665523e-02]), 3)

[64]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, res[0]))
plt.title("refugees fraction vs. gdp")

17

plt.show()

refugees fraction vs. gdp

0.018 +

0.016 ~

0.014 ~

0.012 ~

0.010 ~

refugees

0.008 ~

0.006 ~

0.004 ~

0.002 ~

T T T T T T T
35000 37500 40000 42500 45000 47500 50000
gdp

2.6.5 statsmodels

[65]: import statsmodels.formula.api as smf
[66]: res = smf.ols("refugees ~ gdp", data=data_eu).fit()
[67]: print(res.summary())

OLS Regression Results

Dep. Variable: refugees R-squared: 0.963
Model: OLS Adj. R-squared: 0.945
Method: Least Squares F-statistic: 52.37
Date: Tue, 11 Jul 2023 Prob (F-statistic): 0.0186
Time: 12:17:35 Log-Likelihood: 21.418
No. Observations: 4 AIC: -38.84
Df Residuals: 2 BIC: -40.06
Df Model: 1

18

Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -0.0282 0.005 -5.190 0.035 -0.052 -0.005
gdp 8.993e-07 1.24e-07 7.237 0.019 3.65e-07 1.43e-06
Omnibus: nan Durbin-Watson: 3.069
Prob(Omnibus) : nan Jarque-Bera (JB): 0.688
Skew: -0.913 Prob(JB): 0.709
Kurtosis: 2.112 Cond. No. 2.93e+05

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

[2] The condition number is large, 2.93e+05. This might indicate that there are
strong multicollinearity or other numerical problems.

/usr/1ib/python3/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning:
omni_normtest is not valid with less than 8 observations; 4 samples were given.
warn("omni_normtest is not valid with less than 8 observations; %i "

[68]: print(res.params)

Intercept -2.816655e-02
gdp 8.993165e-07
dtype: float64

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, res.params[1]*x+res.params[0])
plt.title("refugees fraction vs. gdp")
plt.show()

19

refugees fraction vs. gdp

0.018 +

0.016 ~

0.014 ~

0.012 ~

0.010 ~

refugees

0.008 ~

0.006 ~

0.004 ~

0.002 ~

T T T T T T T
35000 37500 40000 42500 45000 47500 50000
gdp

2.7 Appendix: Selecting from DataFrames
2.7.1 Accessing Rows

Passing a single value to loc returns a Series

[70]: frame.loc["a"]

[70]: primes 11
fibo 1
0-4 0
Name: a, dtype: int64

Passing a list to loc returns a DataFrame (even if the list contains a single a single value)

[71]: frame.loc[["a"]1]

[71]: primes fibo 0-4
a 11 1 0

[72]: | frame.loc[["a","c"]]

20

[72]:

[73]:

[73]:

[74]:

[74] :

[75]:

[75]:

[76]:

[76]:

[77]:

[77]:

[78]:

primes fibo
11 1
c 17 2

Also slicing works (but includes the upper boundary)

0-4
0
2

frame.loc["b":"d"]

primes fibo

13 1
c 17 2
d 19 3

0-4
1
2
3

A list of boolean values with n-Rows entries, is considered a mask to select rows

frame.loc[[True,False,True,False,Truel]

primes fibo

11 1
c 17 2
23 5

Instead of a list,

0-4
0
2
4

a boolean-series can be used.

Rows are matched on the

(frame[["primes"]] > 20 would not work as this returns a frame instead of a series.)

frame.loc[frame["primes"] > 20]

primes fibo
e 23 5

When using a mask, .loc is optional (but recommended to avoid confusion with columns).

frame[frame["primes"] > 20]

primes fibo
e 23 5

0-4
4

0-4
4

Using iloc it is possible to access rows by position as well. (without using the index)

frame.iloc[2:-1]

primes fibo
c 17 2
d 19 3

2.7.2 Accessing Columns

0-4
2
3

The frame is subscripted directly. Again, passing a singel value returns a series.

frame["primes"]

21

index.

[78]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64
While a list returns a DataFrame

[79]: frame[["primes"]]

[79]: primes
11
13
17
19
23

O Q& 0 T W

[80]: frame[["primes","0-4"]]

[80]: primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

Instead of subscripting, the get-method can be used.

[81]: frame.get(["primes","0-4"])

[81]: primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

For single columns, an attribute with the same name exists

[82]: frame.primes

[82]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64

But this fails, if the column-name is not a valid attribute-name

22

[83]: | # Raises SyntazError
#frame.0-4

For even more options have a look at the pandas-website: https://pandas.pydata.org/pandas-
docs/stable/indexing.html

23

	Pandas
	Basic Data Structures
	Series
	DataFrame

	Refugee Example
	Loading and Accessing Data
	Working with a Single Country
	Removing Unwanted Data
	Excluding Non-Countries
	Excluding Columns

	Loading Additional Files
	Creating the Plot
	Highlighting a Full Region

	Fitting
	Preparations
	polyfit
	curve_fit
	leastsq
	statsmodels

	Appendix: Selecting from DataFrames
	Accessing Rows
	Accessing Columns

