University of
Zurich*™

Department of Physics

Object-Oriented Programming

Scientific Programming with Python
Jonas Eschle

Based on slides by Andreas Weiden and talks by Niko Wilbert and Roman Gredig
@ @ This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

10 July 2023 Page 1


https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

University of
Zurich*™

Department of Physics

Outline

What is OOP?

Fundamental Principles of OOP
Specialities in Python

Science Examples

Design Patterns

10 July 2023

Page 2



University of
Zurich*™

Department of Physics

Setting the scene

Object-oriented programming is a programming paradigm.

» Imperative programming
» Object-oriented
» Procedural

» Declarative programming

» Functional
» Logic

10 July 2023

A

Page 3



University of
Zurich*™

Department of Physics

What is Object-Oriented Programming?

Aim to segment the program into instances of different classes of
objects:

» Instance variables to describe the state of the object
» Methods to model the behaviour of the object

The definition of a class can be considered like a blue print. The
program will create instances of classes and execute methods of
these instances.

10 July 2023 Page 4



University of
Zurich™

Department of Physics

Why might OOP be a good idea?

DRY (Don’t repeat yourself):

OOP means to create the functionality of
classes once with the possibility to use
them repeatedly in different programms.
In addition inheritance in OOP allows us to
easily create new classes by extending
existing classes (see below).

A

KIS (Keep it simple):

The OOP paradigm allows to split the
functionality of programs into the basic
building blocks and the algorithm
invoking them. Thus it creates a natural
structure within your code.

At one point the problem to solve becomes so complicated that a single sequence of program
instructions is not sufficient to effectively maintain the code.

10 July 2023

Page 5



University of
Zurich*™

Department of Physics

Example of a class

class Dog:
def __init__(self, color="brown"):
self.color = color

def make_sound(self):
print ("Wuff!")

# create an instance ’snoopy’ of the class Dog
snoopy = Dog()

# first argument (self) is this Dog instance
snoopy .make_sound ()

# change snoopy’s color
snoopy.color = "yellow"

10 July 2023

Started with class keyword.

Methods defined as functions in class

scope with at least one argument
(usually called self).

Special method __init__ is called
when a new instance is created.

Define your data attributes first in
__init__.

Page 6



Department of Physics
Fundamental Principles of OOP (I)

Encapsulation

» Only expose what is necessary (public
interface) to the outside.

» Implementation details are hidden to
provide abstraction. Abstraction should
not leak implementation details.

» Abstraction allows to break up a large
problem into understandable parts.

10 July 2023

A

In Python:

» No explicit declaration of
variables/methods as private or public.

» Conventionally, private parts start with
an underscore _.

» Python works with documentation and
conventions instead of enforcement.

Page 7



University of
Zurich*™

Department of Physics

Example of Encapsulation

class Dog:
def __init__(self, color="brown"):
self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change
self .make_sound()

def make_sound(self):
if self._mood < O:
print ("Grrrr!")
else:
print ("Wuff!")

def pat(self):
self._change_mood (1)

[o)
®
h

beat (self):
self._change_mood(-2)

10 July 2023

» The author of the class Dog
wants you to pat and beat the
dog to change its mood.

» Do not use the _mood variable
or the _change_mood method
directly.

Page 8



Department of Physics

Fundamental Principles of OOP (ll)

Inheritance

» Define new classes as subclasses that
are derived from / inherit / extend a
parent class.

» Override parts with specialized
behavior and extend it with additional
functionality.

10 July 2023

A

In Python:

» Inherit from one or multiple classes
(latter one not recommended!)

» Invocation of parent methods with
super function.

» All classes are derived from object,
even if this is not specified explicitly.

Page 9



University of
Zurich*™

Department of Physics

Example of Inheritance

class Mammal:

def __init__(self, color="grey"):

self.color = color
self._mood = 5

def _change_mood(self, change):
self._mood += change

self .make_sound()

def make_sound(self):
raise NotImplementedError

def pat(self):
self._change_mood (1)

def beat(self):
self._change_mood(-2)

10 July 2023

from mammal import Mammal

class Dog(Mammal) :
def __init__(self, color="brown"):
super().__init__(color)

def make_sound(self):
if self._mood < O:
print ("Grrrr!")
else:
print ("Wuff!")
» super().__init__(color) is the call
to the parent constructor.

» super allows also to explicitly access
methods of the parent class.

» This is usually done when extending a
method of the parent class.
Page 10



University of
Zurich™

Department of Physics

Fundamental Principles of OOP (lll)

Polymorphism In Python:
» Different subclasses can be treated » Python is a dynamically typed
like the parent class, but execute their language, which means that the type
specialized behavior. (class) of a variable is only known when
» Example: When we let a mammal the code runs.
make a sound that is an instance of the » Duck Typing: No need to know class
dog class, then we get a barking sound. of object if it provides the required

methods: “If it looks like a duck, swims
like a duck, and quacks like a duck,
then it probably is a duck.” (and we
treat it as a duck)
» Type checking can be performed via the
isinstance function, but generally
10 July 2023 prefer duck typing and polymorphisigge 11



University of
Zurich*™

Department of Physics

Example of Polymorphism

from animals import Dog, Cat, Bear

def caress(mammal, number_of_pats):
if isinstance(mammal, Bear):
raise TypeError("Bad Idea!")
for _ in range (number_of_pats) :
mammal.pat ()

d, ¢, b = Dog(), Cat(), Bear()
caress(d, 3) # "Wuff!" (3x)
caress(c, 3) # "Purr!" (3x)
caress(b, 3) # raises TypeError

10 July 2023

» caress works for all objects
having a method pat, not just
mammals.

» isinstance(mammal, Bear)
checks if mammal is a bear.

» Dynamic typing makes
function overloading like in
other languages impossible!

Page 12



University of
Zurich*™

Department of Physics
Python Specialities — Magic Methods

» Magic methods (full list here)

class Dog:

def __init__(self, name, color="brown"): start and end with two
self.name = name underscores (“dunder”).
self.color = color
self._mood = 5 » They customise standard

def __repr._(self): Python behgwor (e.g. string
return f"{self.name}: {self.color} dog" representation or operator

definition).

snowy = Dog("snowy", "white")
print(snowy) # snowy: white dog

10 July 2023 Page 13


https://docs.python.org/3/reference/datamodel.html#special-method-names

University of
Zurich*™

Department of Physics

Python Specialities — Property
class Dog:
def __init__(self, color="brown"):
self.color = color
self._mood = 5

def _get_mood(self):
if self._mood < O:
return "angry"
else:
return "happy"

mood = property(_get_mood)
# create an instance ’snowy’ of the class Dog

snowy = Dog("white")
print("Snowy is", snowy.mood)

10 July 2023

property () has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

Access calculated values as if they
were stored data attributes.

Define read-only “data attributes”.

Preprocess value assigned to “data
attribute”. (see later)

Page 14



University of
Zurich*™

Department of Physics

Python Specialities — Property
class Dog:
def __init__(self, color="brown"):

self.color = color
self._mood = 5

@property
def mood(self):
if self._mood < O:
return "angry"
else:
return "happy"

# create an instance ’snowy’ of the class Dog

snowy = Dog("white")
print ("Snowy is", snowy.mood)

10 July 2023

property () has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

Access calculated values as if they
were stored data attributes.

Define read-only “data attributes”.

Preprocess value assigned to “data
attribute”. (see later)

Can also use special @-syntax
(function decorator).

Page 14



University of
Zurich*™

Department of Physics

Python Specialities — Classmethods

class Dog: » A classmethod takes as its first
def __init__(self, name, color="brown"): argument a class instead of an instance
self.name = name of the class. It is therefore called c1s
self.color = color .
instead of self.

Gclassmethod ) » One usecase is to write multiple
def from_string(cls, 8): constructors for a class, e.g.:
name, *color = s.split(",")
if not color or type(color) != str: » The default __init__ constructor.
return cls(name) » One constructor from a serialized
return cls(name, color) string.
» One that reads it from a database or
snowy = Dog.from_string("snowy,white") file.
> .

10 July 2023 Page 15



University of
Zurich*™

Department of Physics

Python Specialities — Class attributes

class Dog:
breed = "dog"
all_ = set()

def __init__(self, name, color="brown"):
self .name = name
self.color = color
type(self).all_.add(self)

def __repr__(self):
return f"{self.name}: {self.color} {self.breed}"

Dog("snowy", "white")
balto = Dog("balto")
balto.breed = "husky"
print(Dog.all_) # {snowy: white dog, balto: brown husky}

10 July 2023

A class can also have attributes that
are shared among all its objects.

If the attribute is modified, all objects
will see this ("class global").

Pitfall assignment: Assigning to an
instance (balto.breed = "husky"),
creates a new instance attribute, hiding
the class one. You need the class to
modify the class attribute
(type(balto) .breed = "canis")

Page 16



A

Department of Physics

Advanced OOP Techniques

There many advanced techniques that we didn’t cover:

>

Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to
understand the Method Resolution Order (MRO) to understand super.

Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.

Abstract Base Classes: Enforce that derived classes implement particular methods from the
base class.

Metaclasses: (derived from type), their instances are classes.

Great way to dig yourself a hole when you think you are clever.
Try to avoid these, in most cases you would regret it. (KIS)

10 July 2023 Page 17



University of
Zurich*™

Department of Physics

Science Examples — Vector

class Vector3D: from vector import Vector3D
def __init__(self, x, y, 2z):
self.x, self.y, self.z = x, y, 2z vl = Vector3D(0, 1, 2)

v2 = Vector3D(1,-3, 0)
def __add__(self, other): v3 = vl + v2
return type(self)(self.x + other.x, print(v3.length) # 3.0
self.y + other.y, v3.length = 6
self.z + other.z) print(v3.x, v3.y, v3.z)
@property i . L.
def length(self): » Variable type with optimized
return (self.x**2+self.y**2 behaviour.

+self .z**2)*x0.5 . .
» Add custom functionality

Q@length.setter
def length(self, length): » Note the property setter

scale = length/self.length
self.x *= scale; self.y *= scale; self.z *= scale

10 July 2023 Page 18



University of
Zurich*™

Department of Physics

Science Examples — Dataset

import numpy as np

class Dataset:

mandatory_metadata = ["label", "color", "marker"]

def __init__(self, datafile, **metadata):
for key in self.mandatory_metadata:
if key not in metadata:

raise KeyError("Missing metadata", key)

self .metadata = metadata

self.data = np.loadtxt(datafile, delimiter=",")

self.validate()

def validate(self):
if self.data.shape != (4, 10):

raise ValueError("Bad shape of data, has to be (4, 10)."

@property
def label(self):
return self.metadata["label"]

def peak_row(self):
100Uy 20281 rn self.data.max(axis=1) .argmax()

from dataset import Dataset

ds = Dataset("data_0.csv",
label="calibration",
color="r",
marker="+")

print(ds.label)

» Store additional info with data.
» Validate data on load.

> » Calculated specific quantities.

Page 19



University of
Zurich*™

Department of Physics

Science Examples — Sensors

from urllib.request import urlopen

class Sensor:
def __init__(self, offset=0, scale_factor=1):
self.offset = offset
self.scale = scale_factor

def get_value(self):
return (self._get_raw() + self.offset) * self.scale

def _get_raw(self):
raise NotImplementedError

class WebSensor(Sensor):
def __init__(self, url, *args, **kwargs):
super().__init__(*args, x*kwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)

return float(res.read())
10 July 2023

from sensors import WebSensor

sensor = WebSensor (
"https://crbn.ch/sensor", 273

)

print(sensor.get_value())

» Store configuration with
functionality.

» Allow sensors with different
access methods.

Page 20



University of
Zurich*™

Department of Physics

Science Examples — Value with Uncertainty

class UncertVal:
def __init__(self, value, uncertainty=0):
self.val = value
self.std = uncertainty
def str__(self):

return f"{self.val} +/- {self.std}"

def add(self, other, corr=0):
variance = (self.std ** 2 + other.std *x 2
+ 2 * self.std * other.std * corr)
return type(self)(self.val + other.val,
variance ** 0.5)

def __add__(self, other):
return self.add(other)

10 July 2023

from uncertval import UncertVal

a = UncertVal(2, 0.3)
b = UncertVal(3, 0.4)
print(a + b) # 5 +/- 0.5

» Group several values.
» Add useful representation.

» Define operators respecting
relations between values.

Page 21



University of
Zurich™

Department of Physics

Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right: How design principles can help:

» Rule of three: When you see the » Design principles tell you in an abstract
same functionality the third time it might way what a good design should look
be a good time to create a class (or like (most come down to loose
function). coupling).

» Sometimes it helps to sketch with pen » Design Patterns are concrete solutions
and paper. for reoccurring problems.

» Classes and their inheritance often
have no correspondence to the
real-world, be pragmatic instead of
perfectionist.

» Testability (with unittests) is a good

design criterium.
10 July 2023 Page 22



Department of Physics
Some Design Principles

Scope of classes:
» One class = one single clearly

defined responsibility.

Favor composition over inheritance.
Inheritance is not primarily intended
for code reuse, its main selling point is
polymorphism. “Do | want to use these
subclasses interchangeably?”

Identify the aspects of your
application that vary and separate
them from what stays the same.
Classes should be “open for
extension, closed for modification”

104y 28pen-Closed Principle).

A

How to design (programming)
interfaces:

» Principle of least knowledge.
Each unit should have only limited
knowledge about other units. Only talk
to your immediate friends.

» Minimize the surface area of the
interface.

» Program to an interface, not an
implementation. Do not depend upon
concrete classes.

Page 23



University of
Zurich*™

Department of Physics

Design Patterns

Purpose & background: Examples:
» |dea of concrete design approach for » Decorator pattern
recurring problems. » Strategy pattern
» Closely related to the rise of the » Factory pattern
traditional OOP languages C++ and .

Java.

» More important for compiled languages
(Open-Closed principle stricter!) and ]
those with stronger enforcement of !)"5154“ Pﬁ
encapsulation.

A comprehensive list can be found here.

A Brain-Friendly Guide
_Head First
Design Patterns

itterns
isable

o1

10 July 2023


https://en.wikipedia.org/wiki/Software_design_pattern

University of
Zurich™

Department of Physics

Decorator Pattern




University of
Zurich*™

Department of Physics
Decorator Pattern — Motivation

Challenge:
» How to modify the behaviour of an
individual object . ..
» ...and allowing for multiple
modifications.

Example: Implement a range of products of
a coffee house chain

But what about the beloved add-ons?

(Do not confuse the decorator pattern with
function decorators!)
10 July 2023

class Beverage:
# imagine some attributes like
# temperature, amount left,...
_name "beverage"
_cost 0.00

def __str__(self):

return self._name

@property
def cost(self):
return self._cost

class Coffee(Beverage):
_name "coffee"
_cost = 3.00

class Tea(Beverage):
- Mtea"
_name tea Page 26



University of
Zurich*™

Department of Physics
Decorator Pattern — First try

Solution:
» Implementation via subclasses

Issue: Number of subclasses explodes to
allow for multiple modifications (e.g.
CoffeeWithMilkAndSugar).

10 July 2023

class Coffee(Beverage):
_name = "coffee"
_cost 3.00

class CoffeeWithMilk(Coffee):

_name = "coffee with milk"

_cost = 3.30

class CoffeeWithSugar(Coffee):
_name = "coffee with sugar"

Page 27



University of
Zurich*™

Department of Physics

Decorator Pattern — Second try

Solution:
» Implementation with switches

Issue: No additional add-ons
implementable without changing the class
(violation of the open-close principle!).

10 July 2023

class Beverage:
_name = "beverage"
_cost = 0.00

def __init__(self, milk=False, sugar=False):
self._milk = milk
self._sugar = sugar

def __str__(self):

desc = self._name
if self._milk:

desc += ", with milk"
if self._sugar:
desc += ", with sugar"

return desc

@property
def cost(self):
cost = self._cost
if self._milk:
cost += 0.30

if self._sugar: Page 28



University of
Zurich*™

Department of Physics
Decorator Pattern — Implementation

Solution:

» Create a class that wraps a beverage
and behaves like a beverage itself. (i.e.
implements the beverage interface)

» Possibility to create a chain of
decorators.

» Composition solves the problem.

» Downside: Need to implement all
functions of beverage even if they do
not need to be changed.

10 July 2023

class Ingredient:
def __init__(self, beverage):
self.base = beverage

class Milk(Ingredient):
def __str__(self):

return f"{self.base}, with milk"
@property

def cost(self):
return self.base.cost + 0.30

Page 29



University of
Zurich™

Department of Physics

Strateqy Pattern




University of
<y Lurich™

Department of Physics

Strategy Pattern —

Let’s implement a duck . .

10 July 2023

Motivation (I)

class Duck:
def __init__(self):
# for simplicity this example
# class is stateless
def quack(self):
print ("Quack!")

def display(self):
print ("Boring looking duck.")

def take_off(self):
print("Run fast, flap wings.")

def fly_to(self, destination):
print("Fly to", destination)

def land(self):
print ("Extend legs, touch down.")

Page 31



University of
Zurich*™

Department of Physics

Strategy Pattern — Motivation (ll)

...and different types of ducks!
class RedheadDuck(Duck) :

Oh, no! The rubber duck should def display(self):

. print ("Duck with a read head.")
not fly! We need to overwrite all
the methods about flying. class RubberDuck(Duck):
. . def quack(self):
» What if we want to introduce a print("Squeak!")
DecoyDuck as well?
def display(self):

» What if a normal duck suffers print("Small yellow rubber duck.")

a broken wing?
= It makes more sense to
abstract the flying behaviour.

10 July 2023 Page 32



University of
Zurich*™

Department of Physics

Strategy Pattern — Implementation (I)

» Create a class to class FlyingBehavior:
describe the flying def take_off (self):
behaviour (flylng print("Run fast, flap wings.")

def fly_to(self, destination):
strategy). . . print("Fly to", destination)

. def land(self):
> T give Ducl'z an print ("Extend legs, touch down.")
instance of it . ..

class Duck:
» ...and handle all def _ init._(self):

the fIylng stuff via self.flying_behavior = FlyingBehavior()
F— def take_off(self):
this instance self.flying_behavior.take_off ()
def fly_to(self, destination):
self.flying_behavior.fly_to(destination)
def land(self):
self.flying_behavior.land()
# display, quack as before...

10 July 2023

Page 33



University of
Zurich*™

Department of Physics

Strategy Pattern — Implementation (ll)

» Other example of class NonFlyingBehavior(FlyingBehavior) :
composition over def take_off (self):
: ; print("It’s not working :-(")
inheritance. def fly_to(self, destination):
> Encapsu|ation of raise Exception("I’m not flying.")
function def land(self):
.U . . print("That won’t be necessary.")
implementation in class RubberDuck(Duck) :
the strategy object. def __init__(self):
self.flying_behavior = NonFlyingBehavior ()
» Useful pattern to def quack(self):
; print("Squeak!")
eg d.efln.e def display(self):
optimisation print("Small yellow rubber duck.")
a|gorithm at class DecoyDuck(Duck) :

def __init__(self):
self.flying_behavior = NonFlyingBehavior ()
# different display, quack implementation...

runtime.

10 July 2023 Page 34



A

Department of Physics
Take-aways

» Object-oriented programming offers a powerful pradigm to structure your code.
» Inheritance, design principles and patterns allow to avoid repetitions (DRY).

» But do not overcomplicate things and always ask yourself if applying a particular
functionality makes sense in the given context!

T COULD RESTRUCTURE | | EH, SCREW GXOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

CR lJSE ONE LITILE goto main_sub3;
'GOTO‘\ INSTEAD.

E)ﬁ i 1 ﬂ *COMPILEF

10 July 2023 Page 35




University of
urich™

Department of Physics

Extra



	What is OOP?
	Fundamental Principles of OOP
	Specialities in Python
	Science Examples
	Design Patterns
	Extra

