University of
Zurich*™

Department of Physics

Need for Speed —
Python meets C/C++

Scientific Programming with Python
Christian Elsasser

Partially based on a talk by Stéfan van der Walt ® @ This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

13 July 2023 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

University of
Zurich*™

Department of Physics

T DUNNO-- i
DYNAMIC TYPING? I JusT TYPED
WIHITESPRCE? import ontigmuty
/ core Towus! | [T T2 [
T LEARNED IT LAST FROGRAMMING ... T ALSO SAMPLED
NIGHT] EVERYTHING 15 FUN AGAIN! EVERYHING INTHE
15 60 SIMPLE! ITS A WHOLE YEDICINE CABINET
NEL/ WORLO R COMPARISON
HELLO WORLD 15 JusT \ UP HERE! [
print "Hello, world}" BUT HOWARE BUT T THINK THIS
You FYiNG? 16 THE PYTHON.

[xked]

13 July 2023 Python meets C/C++ Page 2

http://xkcd.com/353

University of
<y Lurich™

Department of Physics

...why not therefore interfacing it with C/C++

(or something similar, e.g. if you don’t feel too young to use Fortran)

Easy to use/Flexibility

*

Speed/Complexity

13 July 2023 Python meets C/C++ Page 3

University of
<y Lurich™

Department of Physics

...why not therefore interfacing it with C/C++

(or something similar, e.g. if you don’t feel too young to use Fortran)

Easy to use/Flexibility

1. Performance improvement
— Cython
Speed/Complexity

13 July 2023 Python meets C/C++ Page 3

University of
<y Lurich™

Department of Physics

...why not therefore interfacing it with C/C++

(or something similar, e.g. if you don’t feel too young to use Fortran)

Easy to use/Flexibility

1. Performance improvement
— Cython
2. Interfaces
' . SWIG

Speed/Complexity

13 July 2023 Python meets C/C++ Page 3

University of
<y Lurich™

Department of Physics

...why not therefore interfacing it with C/C++

(or something similar, e.g. if you don’t feel too young to use Fortran)

Easy to use/Flexibility

1. Performance improvement
\ — Cython
2. Interfaces
— SWIG
' — boost::python
@ — ctypes

Speed/Complexity

13 July 2023 Python meets C/C++ Page 3

University of
<y Lurich™

Department of Physics

...why not therefore interfacing it with C/C++

(or something similar, e.g. if you don’t feel too young to use Fortran)

Easy to use/Flexibility

Agenda

0. Introduction

1. Performance improvement
— Cython

2. Interfaces
— SWIG
— boost::python

@ — ctypes

Speed/Complexity

13 July 2023 Python meets C/C++

Page 3

A

C++ on one Slide www.cplusplus.com and www.learncpp.com

Department of Physics

v

C++ is an (if not the) object-oriented programming language (like Python)
» including inheritance (like Python does in a slightly different way)

» ...operator overloading (like Python)

» It has a rich variety of libraries (like Python)

v

It can raise exceptions (like Python)

It requires declaration of variables (not like Python)

It is (usually) a compiled language! (not like Python)
= C++ and Python share a lot of similarities!

v

v

C is just the non-object-oriented version of C++ (minus some other missing features, e.g.
exceptions)

13 July 2023 Python meets C/C++ Page 4

http://www.cplusplus.com
http://www.learncpp.com

University of
@ Zurich

Department of Physics

A Few Words of Warning

Bad code stays bad code! — Better clean Do not expect miracles! — You have to
it up than trying to overpaint it! master two languages!

13 July 2023 Python meets C/C++ Page 5

A

Department of Physics

C keeps Python running ...

» CPython is the standard implementation of the Python interpreter written in C.

» The Python C API (application programming interface) allows to build C libraries that can be
imported into Python (https://docs.python.org/3/c-api/) ...

» ...and looks like this:

Pure Python

>>>>>> a = [1,2,3,4,5,6,7,8]
>>>>>> sum(a)
36

13 July 2023 Python meets C/C++ Page 6

https://docs.python.org/3/c-api/

University of
Zurich*™

Department of Physics

... but takes a lot of the fun out of Python

C++ implementation

sum_list (PyObject *list) {

int i, n;

long total = 0;

PyObject *item;

n = PyList_Size(list);

if (n < 0)
return -1; /* Not a list */

for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /# Skip non-integers */
total += PyInt_AsLong(item);

}

return total;

13 July 2023 Python meets C/C++ Page 7

University of
Zurich*™

Department of Physics

C/C++ in Python: Not a New Thing

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD;
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;
} PyArrayObject;

= Several Python “standard” libraries are using C/C++ to speed things up

13 July 2023 Python meets C/C++

Page 8

University of
Zurich*™

Department of Physics

Cython — An easy way to get C-enhanced compiled Python code
(http://cython.org)
» Hybrid programming language combining Python and an interface for using C/C++ routines.
» It allows to write C/C++ extensions for Python with limited effort writing them.
» C/C++ routines can be integrated into Python code.
= Every valid Python statement is also valid when using cython.
= Code needs to be compiled — |t takes time!

Cython (v0.29.23 and 3.0) understands Python 3, and also most of the features of C++11

13 July 2023 Python meets C/C++ Page 9

http://cython.org

University of
Zurich*™

Department of Physics

Requirements: Cython package and a C compiler

» cython
The latest version can be downloaded from http://cython.org.

» C/C++ compiler, e.g. gcc/g++/clang (or for Windows: mingw)

Linux: usually already installed

(Ubuntu/Debian: sudo apt-get install build-essential)
MacOS X: XCode command line tools
Windows: Download of MinGW from http:// mingw.org and install it

13 July 2023 Python meets C/C++ Page 10

http://cython.org
http:// mingw.org

University of
Zurich*™

Department of Physics

Benchmark One: Fibonacci series

def fib(n):

a,b = 1,1

a,b = atb,a

return a

for i in range(n):

Fibonacci function - Python

13 July 2023 Python meets C/C++

Page 11

University of
Zurich*™

Department of Physics
Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):
a,b = atb,a

return a

» Type declaration (cdef) = Python/Cython knows what to expect

13 July 2023 Python meets C/C++ Page 11

A

Department of Physics
Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):
a,b = atb,a

return a

» Type declaration (cdef) = Python/Cython knows what to expect

» A few (simple) modifications can easily change the CPU time by a factor of O(100)

13 July 2023 Python meets C/C++ Page 11

University of
Zurich*™

Department of Physics

Compiling Cython Code (The hard way)

.pyx

13 July 2023 Python meets C/C++ Page 12

University of

Zurich™

Department of Physics

A

Compiling Cython Code (The hard way)

cython

.pyx

.cpp

13 July 2023 Python meets C/C++

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

Page 12

University of
Zurich*™

Department of Physics

A

Compiling Cython Code (The hard way)

cython

.pyx

.cpp

.SO

lib

13 July 2023 Python meets C/C++

. Compile Cython code to C/C++ code

cython3 -3 <name>.pyx

. Compile shared object file (i.e. library)

gcc [options] -fPIC -02 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.SoO

» If using C++ code, cython needs the option -+
and gcc — g++

Page 12

University of
Zurich*™

Department of Physics

A

Compiling Cython Code (The hard way)

cython

‘ ¢

gce

Pyx |— .cpp

.SO

lib

13 July 2023 Python meets C/C++

1.

Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

Compile shared object file (i.e. library)
gcc [options] -fPIC -02 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.SoO
» If using C++ code, cython needs the option -+
and gcc — g++
> options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared
School-Laptops:
gcc -shared -fPIC -02 -Wall
-I/usr/include/python3.9/
<name>.c -0 <name>.SsSO

Page 12

University of
Zurich*™

Department of Physics

A

Compiling Cython Code (The hard way)

cython

‘ ¢

gce

Pyx |— .cpp

.SO

Y
N

lib

A

Shared object (<name>. so) can be imported
into Python with import <name>

13 July 2023 Python meets C/C++

1.

Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

Compile shared object file (i.e. library)
gcc [options] -fPIC -02 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.SoO
» If using C++ code, cython needs the option -+
and gcc — g++
> options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared
School-Laptops:
gcc -shared -fPIC -02 -Wall
-I/usr/include/python3.9/
<name>.c -0 <name>.SsSO

Page 12

University of
Zurich*™

Department of Physics

Compiling Cython Code (The easy way)

Support via setuptools for building and installing Python modules = applicable for cython

Cython setup script

from setuptools import setup
from Cython.Build import cythonize

setup(ext_modules = cythonize([<name of .pxy files>],
language_level=3
)

Execute: python setup.py build_ext --inplace
Creates a .c/.cpp file for each .pyx file, then compiles it to an executable (in build
sub-directory) and compiles a .so file (or a .pxd if you are using Windows)

Further options for cythonize via help explorable

13 July 2023 Python meets C/C++ Page 13

University of
Zurich*™

Department of Physics

When to use which way
1. Cython extension in ipython/
Jupyter notebook

» Investigate room for improvements with
cython

» Testing of different implementations
» Rather small code snippets

» No complicated dependencies
on external C/C++ libraries

Modules are not available outside (in princi-

ple)

13 July 2023 Python meets C/C++

A

2. Compiling via setup script (or by hand)

» Creating more complex modules

» (extensive) linking to external C/C++
libraries

» Configuring additional options
(e.g. for optimisation)

Page 14

University of
Zurich*™

Department of Physics

How Performant is My Code?

cython -3 -a/--annotate <name>.pyx — additional HTML file

» bad performance — yellow marking
» allows to investigate code and learn about performance tuning

Generated by Cytheon 0.26

Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: fib py.c

1: # Calculation of n-th fibonacci number
+2: def fib(n):

43z ab =1,1
4z for i in range(n):
452 a,b = atb,a

rn a
CREF (__PY%_T);

_pyxr = _pyxva;
goto __pyx_L0;

» Not every yellow part can be improved!
13 July 2023 Python meets C/C++ Page 15

University of
<y Lurich™

Department of Physics

Benchmark Two: Numerical Integration

e " +1 _ 0521607

/ f(x) =sinx-e”* Exact result:
0

0.00
0.0 0.5 1.0 15 20 25 3.0

13 July 2023 Python meets C/C++ x

Page 16

University of
Zurich*™

Department of Physics

Benchmark Two: Numerical Integration
/ f(x) =sinx-e* Exact result:eiT—H = 0.521607
0

Integration - version 1

from math import sin,exp

def f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets CIC++

Page 16

Zurich™

University of

Department of Physics

Benchmark Two: Numerical Integration

f(x)

/ f(x) =sinx-e™ "
0

Python layer (expensive)

integrate(a,b,N)

Exact result: e

%*1 — 0.521607

C layer (cheap)

_pyx_integrate(a,b,N)
for (i=0; i<N; i++)

pyx£(x)
sum updated

13 July 2023 Python meets C/C++

Page 16

University of
Zurich*™

Department of Physics

Benchmark Two: Numerical Integration
/ f(x) =sinx-e* Exact result:eiT—H = 0.521607
0

Integration - version 2

from math import sin,exp

cdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets CIC++

Page 16

University of
Zurich*™

Department of Physics

Benchmark Two: Numerical Integration
/ f(x) =sinx-e* Exact result:eiT—H = 0.521607
0

Integration - version 3

from math import sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets CIC++

Page 16

University of
Zurich*™

Department of Physics

Benchmark Two: Numerical Integration

/ f(x) =sinx-e* Exact result: &1 — 0.521607
0

2

Integration - version 4

from libc.math cimport sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)

return s*dx

13 July 2023 Python meets CIC++

Page 16

A

e " +1

Department of Physics

Benchmark Two: Numerical Integration

= 0.521607

/ f(x) =sinx-e”* Exact result:
0

» Return values of function can be specified via the key word cdef
» cpdef = function also transparent to Python itself (no performance penalty)

» C/C++ library can be imported via from libc/libcpp.<module> cimport <name> (See
later)

» Using C++ functions can lead to a huge speed-up
» Try to do as much as you can in the C-layer

» Already huge speed-up when leveraging numpy and its vectorisation

13 July 2023 Python meets C/C++ Page 16

) University of
Zurichuzn

Department of Physics

You are here!

SIE BEFINDEN SICH HIER :

) University of
Zurich*™

Department of Physics

STL Containers

An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)
Object holders with specific memory access structure, e.g.

» std::vector allows to access any element

» std::1list only allows to access elements via iteration

» std::map represents an associative container with a key and a mapped values

13 July 2023 Python meets C/C++ Page 18

University of
Zurich*™

Department of Physics

STL Containers

An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

...and Cython knows how to treat them!

Python — C++ — Python
iterable — std:ivector — list
iterable — std::list — list
iterable — std::set — set
iterable (len2) — std::pair — tuple (len 2)
dict — stdimap — dict
bytes — stdustring — bytes

13 July 2023 Python meets C/C++ Page 18

Department of Physics

STL Containers

An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)
A few remarks!

» iterators (e.g. it) can be used =- dereferencing with dereference(it) and
incrementing/decrementing with preincrement (i.e. ++it), postincrement (i.e. it++),
predecrement (i.e. --it) and postdecrement (i.€. it--) from cython.operator

» Be careful with performance! = performance lost due to shuffling of data

» More indepth information can be found directly in the corresponding sections of the cython
code https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

» C++11 containters (like std: :unordered_map) are partially implemented

13 July 2023 Python meets C/C++ Page 18

https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

Department of Physics

Exceptions/Errors

In terms of exception and error handling three different cases need to be considered:

» Raising of a Python error in cython code = return values make it impossible to raise
properly Python errors (Warning message, but continuing)

» Handling of error codes from pure C functions

» Raising of a C++ exception in C++ code used in cython = C++ exception terminates — if
not caught — program

13 July 2023 Python meets C/C++ Page 19

University of
Zurich*™

Department of Physics
Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

= Just prints a warning (and worse gives an ambigious return value)

13 July 2023 Python meets C/C++ Page 20

University of
Zurich*™

Department of Physics
Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

= Just prints a warning (and worse gives an ambigious return value)

Python Error in Cython - treated

cpdef int raiseError() except *:
raise RuntimeError("A problem")
return 1

= Propagates the RuntimeError

13 July 2023 Python meets C/C++

Page 20

University of
Zurich*™

Department of Physics

Errors in C

C does not know exceptions like Python or C++. If errors should be caught, it is usually done via
dedicated return values of functions which cannot appear in a regular function call.

Use the except statement to tell cython about this value

Handling a C Error

cpdef int raiseException() except -1:

return -1

13 July 2023 Python meets C/C++ Page 21

University of
Zurich*™

Department of Physics

Exceptions in C++

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUCDENLY YoU | WELL, THATS WHAT A
HUM? ;3] FALLING ASLEER AND MISSTER, STUMBLE, SEGFAULT FEELS LIKE.
U YOU IMAGINE YOURSELF | AND JOLT AWAKE? 3
BEFORE You WALKING OR YEAH! DOUBLE - CHECK YOUR
&HIT (OMPILE, A SOMETHING, il ﬂ’ DAMN POINTERS, OKAY?
LISTEN Up % X g
Qi [xked]

In cython this is also true for C++ exceptions!
Cython is not able to deal with C++ exceptions in a try-and-except clause!

= But capturing in cython and translating to Python exceptions/errors is possible!

13 July 2023 Python meets C/C++ Page 22

University of
Zurich*™

Department of Physics

Exceptions in C++
...and how to tackle them!

' C++ — Python

> cdef <C++ function>() except + bad_alloc — MemoryError
= translateg aC++ exc_:eptlon into a Python bad_cast - TypeError
error according to the right-hand scheme domain_error —» ValueError
cdef <C++ function>() except invalid_argument — ValueError
+<Python Error> e.g. MemoryError = ios_base::failure — |OError
translates every thrown C++ exception into out_of range — IndexError
a MemoryError overflow_error — OverflowError
cdef <C++ function>() except range_error — ArithmeticError
+<function raising Python error> = underflow_error — ArithmeticError
runs the indicated function if the C++ (all others) — RuntimeError

function throws any exception. If <function
raising Python error> does not raise an
error, a RuntimeError will be raised.

13 July 2023 Python meets C/C++

Page 22

University of
Zurich*™

Department of Physics

Classes
Classes are a common feature of Python and C++

There are two aspects when dealing with cython:
» Defining classes containing C++ code in cython
» C++ classes integrated into Python

13 July 2023 Python meets C/C++

Page 23

University of
Zurich*™

Department of Physics

Defining Classes in Cython
Let’'s go back to the integration examples

Defining classes in Cython

cdef class Integrand:
cpdef double evaluate(self,double x) except *:

raise NotImplementedError ()
cdef class SinExpFunction(Integrand):
cpdef double evaluate(self,double x):
return sin(x)*exp(-x)

def integrate(Integrand f,double a,double b,int N):

s += f.evaluate(a+(i+0.5)*dx)

13 July 2023 Python meets C/C++ Page 24

University of
Zurich*™

Department of Physics

Defining Classes in Cython
Let’'s go back to the integration examples

Adding classes in Python

class Poly(Integrand):
def evaluate(self,double x):
return x*x-3*x
integrate(Poly(),0.0,2.0,1000)

=- Speed lost with respect to definition in cython, but still faster than a pure Python
implementation

13 July 2023 Python meets C/C++

Page 24

Department of Physics

Integration of C Functions in Cython

Starting point: .c/.h file for function definition e.g. fast_inv_sqrt
1. Expose it to Cython by declaring the function signature.

2. Integrating it into Cython either via direct usage or by defining a wrapper function.

C function definition in c_func.c

#include <stdio.h>

double fast_inv_sqrt(double number)

{

}

13 July 2023 Python meets C/C++

Page 25

University of
Zurich*™

Department of Physics

Integration of C Functions in Cython
Starting point: .c/.h file for function definition e.g. fast_inv_sqrt
1. Expose it to Cython by declaring the function signature.

2. Integrating it into Cython either via direct usage or by defining a wrapper function.

Wrapping the function

cdef extern from "c_func.c":
double fast_inv_sqrt(double number)

def py_fis(number:double) -> double:
return fast_inv_sqrt(number)

def norm_vector(values:list) -> list:
length_squared = sum([x**2 for x in values])
return [x*fast_inv_sqrt(1ength_squared) for x in values]

13 July 2023 Python meets C/C++

Page 25

University of
Zurich*™

Department of Physics

Integration of C++ Classes in Cython — Possible but cumbersome
Starting point: .cpp/ .k file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Exposing C++ classes in Cython

distutils: language = c++
distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":
cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, yO, x1, yi1
int getLength()
int getHeight ()
int getArea()
void move(int, int)

13 July 2023 Python meets C/C++ Page 26

University of
Zurich*™

Department of Physics

Integration of C++ Classes in Cython — Possible but cumbersome

Starting point: .cpp/ .k file for class Rectangle defined in a namespace shapes
1. Expose it to Cython by delaring the class structure and method signatures
2. Integrating it into Cython either via direct usage or by defining a wrapper class

Wrapping the class for Python

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int yO, int x1, int y1):
self.thisptr = new Rectangle(x0, yO, x1, y1)
def __dealloc__(self):
del self.thisptr
def getLength(self):
return self.thisptr.getLength()
def getHeight(self):
return self.thisptr.getHeight()

July 2023 Python meets CG/Ca+ Page

University of
Zurich*™

Department of Physics

Automatic Wrappers
... since not everybody likes to write lines of error-prone code
SWIG

boost::python
» ctypes

v

v

> ...

Goal: creating compilable C/C++ code
based on the Python C API

13 July 2023 Python meets C/C++ Page 27

) University of
Zurich*™

Department of Physics

SWIG

SWIG: Simplified Wrapper and Interface Generator
» Generic Wrapper for C/C++ to script-like languages
> R
> Perl
> Ruby
> Tcl
» PHP5
» Java
» ...and Python

» Pretty old — created in 1995 by Dave Beazley
» Current version is 4.0.2

13 July 2023 Python meets C/C++

A

Page 28

University of
Zurich*™

Department of Physics

SWIG - in a Nutshell

13 July 2023 Python meets C/C++ Page 29

University of
Zurich*™

Department of Physics

SWIG - in a Nutshell

1. Create python wrapper and

swig i
S necessary C files
. i -ct++ - th < >.1
h oXX Swig C Py on <name 1
G
.cpp
i -py

13 July 2023 Python meets C/C++ Page 29

Department of Physics

SWIG - in a Nutshell

3 ‘

swig gcc gce
.c
h .CXX | —— .0 — SO
.C .cpp
el S
T
[-py =
lib
N

13 July 2023 Python meets C/C++

A

. Create python wrapper and

necessary C files
swig -c++ -python <name>.i

. Compile shared object (i.e. library)

Step 2 best handed to setuptool

(setup.py)
python setup.py build_ext

--inplace

Page 29

Department of Physics

SWIG - in a Nutshell

3 ‘

swig gcc gce
.c
h .CXX | —— .0 — SO
.C .cpp
el S
T
[-py =
lib
N

13 July 2023 Python meets C/C++

A

. Create python wrapper and

necessary C files
swig -c++ -python <name>.i

. Compile shared object (i.e. library)

Step 2 best handed to setuptool

(setup.py)
python setup.py build_ext

--inplace

Page 29

Department of Physics

SWIG - in a Nutshell

3 ‘

swig gcc gce
.c
h .CXX | —— .0 — SO
.C .cpp
el S
T
[-py =
lib
N

Moduel (<name>.py) can be imported into Python
with import name =- Shared object needs different

name
13 July 2023 Python meets C/C++

A

. Create python wrapper and

necessary C files
swig -c++ -python <name>.i

. Compile shared object (i.e. library)

Step 2 best handed to setuptool

(setup.py)
python setup.py build_ext

--inplace

Page 29

University of
Zurich*™

Department of Physics

SWIG - The interface file

Main configuration with interface (. 1i) files
» specify which (header) file(s) contain(s)
the C/C++ code to wrap

» define special data types
(e.g. std::vector<...>)

» handle additional configuration (e.g.
exception/error translation)

13 July 2023 Python meets C/C++

Interface file

%module geom // name of the module

// things swig should know about
%include "Shape.h"
%include "Rectangle.h"

// things that should be put into the
// header of the wrapper file (.c/.czz)
3t

#include "Shape.h"

#include "Rectangle.h"

h¥

Page 30

University of
Zurich*™

Department of Physics
SWIG - The setup.py file

setuptools setup script (setup.py)

from setuptools import setup, Extension
extension_mod = Extension("_<name>" , # Use _ to distinguish to final module name
["<name_wrap>.cxx",
"<sourcel>.cpp",
"<source2>.cpp","..."],
language="'c++"')
setup(name = "_<name>", ext_modules=[extension_mod])

» To be build extension needs a different name than the module set up by SWIG
(default: _name

» Language option only needed for C++
» python setup.py build_ext --inplace

13 July 2023 Python meets C/C++

Page 31

A

Department of Physics

A Few Remarks about SWIG

v

SWIG ~ performance loss with respect to cython

If SWIG works: ©

If it does not: ®

...and therefore you can lose a lot of time with special problems

v v Vv

v

It is not always optimal to expose the whole class to Python

13 July 2023 Python meets C/C++ Page 32

Department of Physics

Conclusion

» Interfacing Python with C/C++ is — or
better — can be a way to create powerful
code

» cython and SWIG are two nice tools to
do so

» ...but always make the interfacing
maintainable/useful/etc. i.e. not a British
train door

» And it’s all about finding the sweet spot!

13 July 2023 Python meets C/C++

® To open door

Open door using
outside handle

Danger

Page 33

University of
Zurich*™

Department of Physics

The Sweet Spot!

Time spent

Pure code optimal Compiled code optimal

Python + C/C++

. Python
Compilation

Code executed per compilation

13 July 2023 Python meets C/C++ Page 34

University of
urich™

Department of Physics

The End!

13 July 2023 Python meets C/C++

A

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

[xked]

Page 35

University of
Zurich*™

Department of Physics

References

1. Stéfan van der Walt, Speeding up scientific Python code using Cython, Advanced Scientific
Programming in Python, 2013 (Zurich) & 2014 (Split)

2. Stefan Behnel et al., Cython tutorial, Proceedings of the 8" Python in Science Conference (SciPy 2009)
= based on older cython version, but the main reference of cython

3. Dave Beazley, Swig Master Class, PyCon’2008
4. http://docs.cython.org/src/tutorial/

5. http://www.swig.org

13 July 2023 Python meets C/C++ Page 36

http://docs.cython.org/src/tutorial/
http://www.swig.org

University of

urich*™

Department of Physics

Backup

) University of
Zurich*™

Department of Physics

Fortran meets Python

The £2py compiler (http://docs.scipy.org/doc/numpy-dev/f2py/) offers —in a similar way as
cython — the possibility to generate extension modules for Python from Fortran code.

f2py -c -m <module name> <fortran file>.f/.f90 -I<path to python header file>
builds from the code in <fortran file>.f/.£90 a importable module (i.e. shared object)
<module name>.so

Fortran modules and subroutines are exposed to Python on time of the import of the built module.

The compilation can also be split into a first step generating a signature file, which is in a second
step compiled into the extension module

13 July 2023 Python meets C/C++ Page 38

http://docs.scipy.org/doc/numpy-dev/f2py/

University of
Zurich*™

Department of Physics

Exceptions in C++
Examples

Two C++ functions void raiseException() and void raiseBadAlloc() defined in

except_cy.h

cdef extern from 'except_cy.h'

def tryIt(Q):
try:
raiseException()
except RuntimeError as e:
print(e)

Exception Example 1

cdef void raiseException() except +

= OK as raiseException() throws a std: :exception — RuntimeError

13 July 2023 Python meets C/C++

Page 39

University of
Zurich*™

Department of Physics

Exceptions in C++

Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 2

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError
def tryIt(Q):
try:
raiseException()
except RuntimeError as e:
print(e)

= Not OK as raiseException() throws a std: : exception which is explicitly transformed into a
MemoryError

13 July 2023 Python meets C/C++ Page 39

University of
Zurich*™

Department of Physics

Exceptions in C++

Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 3

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError
def tryIt(Q):
try:
raiseException()
except RuntimeError as e:
print(e)

= Not OK as raiseBadAlloc() throws a std: :bad_alloc which is transformed into a
MemoryError

13 July 2023 Python meets C/C++

Page 39

University of
Zurich*™

Department of Physics

Exceptions in C++

Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 4

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError
def tryIt(Q):
try:
raiseException()
except RuntimeError as e:
print(e)

= OK as raiseBadAlloc() throws a std: :bad_alloc which is transformed into a MemoryError

13 July 2023 Python meets C/C++ Page 39

University of
Zurich*™

Department of Physics

Exceptions in C++

Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 5

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError
def tryIt(Q):
try:
raiseException()
except RuntimeError as e:
print(e)

= OK as raise_py_error() throws an error

13 July 2023 Python meets C/C++

Page 39

University of
Zurich*™

Department of Physics

Exceptions in C++

Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 6

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError
def tryIt(Q):
try:
raiseException()
except RuntimeError as e:
print(e)

= Not OK as no error is thrown by raise_py_error ()

13 July 2023 Python meets C/C++

Page 39

University of
<y Lurich™

Department of Physics

Integration of C++ Classes

Assuming a C++ class Rectangle

namespace shapes {
class Rectangle {
public:

Rectangle(int x0,

int getLength();
int getHeight();
int getArea();
void move(int dx,

Rectangle.h - Class header file

int x0, yO, x1, yi;

int yO, int x1, int y1);

“Rectangle(); // destructor

int dy);

13 July 2023 Python meets C/C++

Page 40

University of
Zurich*™

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.cpp - Class implementation

#include "Rectangle.h"

#include <iostream>

using namespace shapes;

Rectangle: :Rectangle(int X0, int YO, int X1, int Y1) {

x0 = XO0;
yo = YO;
x1 = X1;
yi = Y1;

std::cout << "Here I am" << std::endl;}
Rectangle: :“Rectangle() {
std::cout << "Byebye" << std::endl;}

13 July 2023 Python meets C/C++

Page 40

University of
Zurich*™

Department of Physics

Integration of C++ Classes
Now exposing it to cython

rect_wrap.pyx - exposing the class to Cython

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int yO, int x1, int y1):
self.thisptr = new Rectangle(x0, yO, x1, y1)
def __dealloc__(self):
del self.thisptr
def getLength(self):
return self.thisptr.getLength()
def getHeight(self):
return self.thisptr.getHeight ()

13 July 2023 Python meets C/C++ Page 40

University of
Zurich*™

Department of Physics

Integration of C++ Classes
...and using it!

Either in further cython code!

Using it in Cython code

def tryIt():
cdef Rectangle* r

try:
r = new Rectangle(1,2,3,4)
print ("My length is {0:f}".format(r.getLength()))
print("My first x-coordinate is {0:f}".format(r.x0))
finally:

del r

13 July 2023 Python meets C/C++

Page 40

University of
<y Lurich™

Department of Physics

Integration of C++ Classes
...and using it!

Or for creating a Python (wrapper) class!

Wrapping the Class
distutils: language = c++
distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":
cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, yO, x1, yi1
int getLength()
int getHeight()
int getArea()
void move(int, int)

13 July 2023 Python meets C/C++

Page 40

University of
Zurich*™

Department of Physics

Special features: STL Stuff with SWIG

» Dedicated interface files need to be integrated when running SWIG
» ...and templates for each containers + each content need to be defined

Interface file with advanced type def

%include "std_vector.i"
%include "std_string.i"

Jtemplate(dVector) std::vector<double>;
Jtemplate(rectVector) std::vector<Rectangle*>;

13 July 2023 Python meets C/C++ Page 41

University of
Zurich*™

Department of Physics
Special features: Exceptions with SWIG

Interface file with exception definition

%include "exception.i"

Jexceptionclass ShapeError;
Jexception *::whine {
try {
$action
} catch(ShapeError & e) {
ShapeError *ecopy = new ShapeError(e);
PyObject *err = SWIG_NewPointerObj(ecopy, SWIGTYPE_p_ShapeError, 1);
PyErr_SetObject (SWIG_Python_ExceptionType (SWIGTYPE_p_ShapeError), err);
SWIG_fail;

}

13 July 2023 Python meets C/C++ Page 42

University of
Zurich*™

Department of Physics

Special features: Overloading
Cython deals the usual way with overloaded methods in C++:

Overloading in the interface - it works

cdef extern from "Rectangle.h" namespace "shapes":

void move(int, int)
void move(int)

but it cannot happen in a Python wrapper class:

Overloading in the wrapper - it does not work

cdef class PyRectangle:

def move(self,dx,dy):

return self.thisptr.move(dx,dy)
def move(self,d):

return self.thisptr.move(d)

13 July 2023 Python meets C/C++

Page 43

University of
Zurich*™

Department of Physics

Special features: Inheritance
As in Python C++ classes can inherit from parent classes including overriding of methods

C++ classes - inheritance

class Shape {
public:

void virtual printInfo(); // Prints "Shape”
};
class Rectangle : public Shape {
public:

void printInfo(); // Prints "Rectangle"”
};

13 July 2023 Python meets C/C++

Page 44

University of
Zurich*™

Department of Physics

Special features: Inheritance

Cython can also deal with this feature, but there are two points to keep in mind:
1. If parent class is also exposed to cython, no redefinition of overridden methods is required
(and also allow — mis-interpreted as overloading)

C++ classes - inheritance wrapper

cdef class PyObject:
cdef Object* thisptr
def __cinit__(self):
self.thisptr = new Object()
def __dealloc__(self):
del self.thisptr
def printInfo(self):
self.thisptr.printInfo()
cdef class PyRectangle(PyObject):
def __cinit__(self,int x0,int yO,int x1,int y1):
self.thisptr = new Rectangle(x0,y0,x1,y1)

13 July 2023 Python meets C/C++ Page 44

University of
Zurich*™

Department of Physics

Special features: Inheritance

2. The inheritance can only be transported into wrapper classes if child classes have the same
set of methods as the mother class

C++ classes - inheritance exposed

cdef extern from "Rectangle.h" namespace "shapes":
cdef cppclass Shape:
Shape() except +
void printInfo()
cdef cppclass Rectangle(Shape):
Rectangle(int, int, int, int) except +

void printInfo() # causes problems

13 July 2023 Python meets C/C++ Page 44

University of
<y Lurich™

Department of Physics

Special features: Operator Overloading
C++ as well as Python offers the potential to define operators for objects.

Example with Rectangles:

Multiplication of rectangles: Create the rectangle that is the bounding box of the two

13 July 2023 Python meets C/C++

Page 45

University of
Zurich*™

Department of Physics
Special features: Operator Overloading

C++ code - operator overloading

Rectangle operator*(Rectangle& rhs){
double x0_n = min(min(x0,x1) ,min(rhs.x0,rhs.x1)),x1_n = max(max(x0,x1) ,max(rhs.x0,rhs.x1));
double yO_n = min(min(y0,y1) ,min(rhs.y0,rhs.y1)),yl_n = max(max(y0,y1) ,max(rhs.y0,rhs.y1));
return Rectangle(x0_n,yO_n,x1_n,yl_n);

Cython wrapper - operator overloading

to expose it to Cython

Rectangle operator*(Rectangle)

in the wrapper class

def __mul__yRectangle lhs,PyRectangle rhs):
res = PyRectangle(0,0,0,0)
res.thisptr[0] = lhs.thisptr[0]*rhs.thisptr[0] # ptr deref
return res

July 2023 Python meets C/C++ Page

Department of Physics

Arrays

Arrays in cython are usually treated via typed memoryviews (e.g. double[:,:] means a
two-dimensional array of doubles, i.e. compatible with e.g. np.ones((3,4)))
Further you can specify which is the fastest changing index by :1, e.g.

» double[::1,:,:] is a F-contiguous three-dimensional array

» doublel:,:,::1] is a C-contiguous three-dimensional array

» double[:,::1,:] is neither F- nor C-contiguous
For example a variable double[:,::1] ahas as NumPy arrays variables like shape and size
and the elements can be accessed by ali, j]

But be aware: NumPy is already heavily optimised, so do not to reinvent the wheel!

13 July 2023 Python meets C/C++ Page 46

	Backup

