
Department of Physics

Need for Speed –
Python meets C/C++
Scientific Programming with Python

Christian Elsasser

Partially based on a talk by Stéfan van der Walt This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

13 July 2023 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


Department of Physics

Python is nice, but by construction slow . . .

[xkcd]

13 July 2023 Python meets C/C++ Page 2

http://xkcd.com/353


Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

13 July 2023 Python meets C/C++ Page 3



Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

13 July 2023 Python meets C/C++ Page 3



Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

13 July 2023 Python meets C/C++ Page 3



Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

13 July 2023 Python meets C/C++ Page 3



Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

0. Introduction

Agenda

13 July 2023 Python meets C/C++ Page 3



Department of Physics

C++ on one Slide www.cplusplus.com and www.learncpp.com

I C++ is an (if not the) object-oriented programming language (like Python)
I including inheritance (like Python does in a slightly different way)
I . . . operator overloading (like Python)
I It has a rich variety of libraries (like Python)
I It can raise exceptions (like Python)
I It requires declaration of variables (not like Python)
I It is (usually) a compiled language! (not like Python)
⇒ C++ and Python share a lot of similarities!

C is just the non-object-oriented version of C++ (minus some other missing features, e.g.
exceptions)

13 July 2023 Python meets C/C++ Page 4

http://www.cplusplus.com
http://www.learncpp.com


Department of Physics

A Few Words of Warning

Bad code stays bad code! – Better clean
it up than trying to overpaint it!

Do not expect miracles! – You have to
master two languages!

13 July 2023 Python meets C/C++ Page 5



Department of Physics

C keeps Python running . . .

I CPython is the standard implementation of the Python interpreter written in C.
I The Python C API (application programming interface) allows to build C libraries that can be

imported into Python (https://docs.python.org/3/c-api/) . . .
I . . . and looks like this:

Pure Python

>>>>>> a = [1,2,3,4,5,6,7,8]
>>>>>> sum(a)
36

13 July 2023 Python meets C/C++ Page 6

https://docs.python.org/3/c-api/


Department of Physics

. . . but takes a lot of the fun out of Python
C++ implementation

sum_list(PyObject *list) {
int i, n;
long total = 0;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */

for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

13 July 2023 Python meets C/C++ Page 7



Department of Physics

C/C++ in Python: Not a New Thing

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD;
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject;

⇒ Several Python “standard” libraries are using C/C++ to speed things up

13 July 2023 Python meets C/C++ Page 8



Department of Physics

Cython – An easy way to get C-enhanced compiled Python code
(http://cython.org)

I Hybrid programming language combining Python and an interface for using C/C++ routines.
I It allows to write C/C++ extensions for Python with limited effort writing them.
I C/C++ routines can be integrated into Python code.

⇒ Every valid Python statement is also valid when using cython.

⇒ Code needs to be compiled→ It takes time!

Cython (v0.29.23 and 3.0) understands Python 3, and also most of the features of C++11

13 July 2023 Python meets C/C++ Page 9

http://cython.org


Department of Physics

Requirements: Cython package and a C compiler

I cython
The latest version can be downloaded from http://cython.org.

I C/C++ compiler, e.g. gcc/g++/clang (or for Windows: mingw)

Linux: usually already installed
(Ubuntu/Debian: sudo apt-get install build-essential)

MacOS X: XCode command line tools

Windows: Download of MinGW from http:// mingw.org and install it

13 July 2023 Python meets C/C++ Page 10

http://cython.org
http:// mingw.org


Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Python

def fib(n):

a,b = 1,1
for i in range(n):
a,b = a+b,a

return a

13 July 2023 Python meets C/C++ Page 11



Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):
a,b = a+b,a

return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

13 July 2023 Python meets C/C++ Page 11



Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):
a,b = a+b,a

return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

I A few (simple) modifications can easily change the CPU time by a factor of O(100)

13 July 2023 Python meets C/C++ Page 11



Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

13 July 2023 Python meets C/C++ Page 12



Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

13 July 2023 Python meets C/C++ Page 12



Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

13 July 2023 Python meets C/C++ Page 12



Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

13 July 2023 Python meets C/C++ Page 12



Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall
-I<path_to_python_include>
-L<path_to_python_library>
<name>.c -o <name>.so

I If using C++ code, cython needs the option -+
and gcc → g++

I options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

13 July 2023 Python meets C/C++ Page 12



Department of Physics

Compiling Cython Code (The easy way)
Support via setuptools for building and installing Python modules⇒ applicable for cython

Cython setup script

from setuptools import setup
from Cython.Build import cythonize

setup(ext_modules = cythonize([<name of .pxy files>],
language_level=3

))

Execute: python setup.py build_ext --inplace
Creates a .c/.cpp file for each .pyx file, then compiles it to an executable (in build
sub-directory) and compiles a .so file (or a .pxd if you are using Windows)

Further options for cythonize via help explorable

13 July 2023 Python meets C/C++ Page 13



Department of Physics

When to use which way
1. Cython extension in ipython/
Jupyter notebook

I Investigate room for improvements with
cython

I Testing of different implementations
I Rather small code snippets
I No complicated dependencies

on external C/C++ libraries

Modules are not available outside (in princi-
ple)

2. Compiling via setup script (or by hand)

I Creating more complex modules
I (extensive) linking to external C/C++

libraries
I Configuring additional options

(e.g. for optimisation)

13 July 2023 Python meets C/C++ Page 14



Department of Physics

How Performant is My Code?

cython -3 -a/--annotate <name>.pyx→ additional HTML file

I bad performance→ yellow marking
I allows to investigate code and learn about performance tuning

I Not every yellow part can be improved!
13 July 2023 Python meets C/C++ Page 15



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

13 July 2023 Python meets C/C++ Page 16



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 1

from math import sin,exp

def f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets C/C++ Page 16



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Python layer (expensive)

integrate(a,b,N)
.
.
f(x)
.
.

C layer (cheap)

.
_pyx_integrate(a,b,N)
for (i=0; i<N; i++)
.
_pyx_f(x)
sum updated

13 July 2023 Python meets C/C++ Page 16



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 2

from math import sin,exp

cdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets C/C++ Page 16



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 3

from math import sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets C/C++ Page 16



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 4

from libc.math cimport sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

13 July 2023 Python meets C/C++ Page 16



Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

I Return values of function can be specified via the key word cdef
I cpdef⇒ function also transparent to Python itself (no performance penalty)

I C/C++ library can be imported via from libc/libcpp.<module> cimport <name> (see
later)

I Using C++ functions can lead to a huge speed-up
I Try to do as much as you can in the C-layer

I Already huge speed-up when leveraging numpy and its vectorisation

13 July 2023 Python meets C/C++ Page 16



Department of Physics

You are here!

13 July 2023 Python meets C/C++ Page 17



Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

Object holders with specific memory access structure, e.g.
I std::vector allows to access any element
I std::list only allows to access elements via iteration
I std::map represents an associative container with a key and a mapped values

13 July 2023 Python meets C/C++ Page 18



Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

. . . and Cython knows how to treat them!

Python → C++ → Python
iterable → std::vector → list
iterable → std::list → list
iterable → std::set → set

iterable (len 2) → std::pair → tuple (len 2)
dict → std::map → dict

bytes → std::string → bytes

13 July 2023 Python meets C/C++ Page 18



Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

A few remarks!
I iterators (e.g. it) can be used⇒ dereferencing with dereference(it) and

incrementing/decrementing with preincrement (i.e. ++it), postincrement (i.e. it++),
predecrement (i.e. --it) and postdecrement (i.e. it--) from cython.operator

I Be careful with performance! ⇒ performance lost due to shuffling of data
I More indepth information can be found directly in the corresponding sections of the cython

code https://github.com/cython/cython/tree/master/Cython/Includes/libcpp
I C++11 containters (like std::unordered_map) are partially implemented

13 July 2023 Python meets C/C++ Page 18

https://github.com/cython/cython/tree/master/Cython/Includes/libcpp


Department of Physics

Exceptions/Errors
In terms of exception and error handling three different cases need to be considered:

I Raising of a Python error in cython code⇒ return values make it impossible to raise
properly Python errors (Warning message, but continuing)

I Handling of error codes from pure C functions
I Raising of a C++ exception in C++ code used in cython⇒ C++ exception terminates – if

not caught – program

13 July 2023 Python meets C/C++ Page 19



Department of Physics

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

13 July 2023 Python meets C/C++ Page 20



Department of Physics

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

Python Error in Cython - treated

cpdef int raiseError() except *:
raise RuntimeError("A problem")
return 1

⇒ Propagates the RuntimeError

13 July 2023 Python meets C/C++ Page 20



Department of Physics

Errors in C
C does not know exceptions like Python or C++. If errors should be caught, it is usually done via
dedicated return values of functions which cannot appear in a regular function call.

Use the except statement to tell cython about this value

Handling a C Error

cpdef int raiseException() except -1:
return -1

13 July 2023 Python meets C/C++ Page 21



Department of Physics

Exceptions in C++

[xkcd]

In cython this is also true for C++ exceptions!

Cython is not able to deal with C++ exceptions in a try-and-except clause!

⇒ But capturing in cython and translating to Python exceptions/errors is possible!

13 July 2023 Python meets C/C++ Page 22



Department of Physics

Exceptions in C++
. . . and how to tackle them!

I cdef <C++ function>() except +
⇒ translates a C++ exception into a Python
error according to the right-hand scheme

I cdef <C++ function>() except
+<Python Error> e.g. MemoryError⇒
translates every thrown C++ exception into
a MemoryError

I cdef <C++ function>() except
+<function raising Python error>⇒
runs the indicated function if the C++
function throws any exception. If <function
raising Python error> does not raise an
error, a RuntimeError will be raised.

C++ → Python
bad_alloc → MemoryError
bad_cast → TypeError

domain_error → ValueError
invalid_argument → ValueError
ios_base::failure → IOError

out_of_range → IndexError
overflow_error → OverflowError

range_error → ArithmeticError
underflow_error → ArithmeticError

(all others) → RuntimeError

13 July 2023 Python meets C/C++ Page 22



Department of Physics

Classes
Classes are a common feature of Python and C++

There are two aspects when dealing with cython:
I Defining classes containing C++ code in cython
I C++ classes integrated into Python

13 July 2023 Python meets C/C++ Page 23



Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Defining classes in Cython

cdef class Integrand:
cpdef double evaluate(self,double x) except *:

raise NotImplementedError()

cdef class SinExpFunction(Integrand):
cpdef double evaluate(self,double x):

return sin(x)*exp(-x)

def integrate(Integrand f,double a,double b,int N):
...
s += f.evaluate(a+(i+0.5)*dx)

13 July 2023 Python meets C/C++ Page 24



Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Adding classes in Python

class Poly(Integrand):
def evaluate(self,double x):

return x*x-3*x
integrate(Poly(),0.0,2.0,1000)

⇒ Speed lost with respect to definition in cython, but still faster than a pure Python
implementation

13 July 2023 Python meets C/C++ Page 24



Department of Physics

Integration of C Functions in Cython
Starting point: .c/.h file for function definition e.g. fast_inv_sqrt

1. Expose it to Cython by declaring the function signature.

2. Integrating it into Cython either via direct usage or by defining a wrapper function.

C function definition in c_func.c

# include <stdio.h>

double fast_inv_sqrt( double number )
{

...
}

13 July 2023 Python meets C/C++ Page 25



Department of Physics

Integration of C Functions in Cython
Starting point: .c/.h file for function definition e.g. fast_inv_sqrt

1. Expose it to Cython by declaring the function signature.

2. Integrating it into Cython either via direct usage or by defining a wrapper function.

Wrapping the function

cdef extern from "c_func.c":
double fast_inv_sqrt(double number)

def py_fis(number:double) -> double:
return fast_inv_sqrt(number)

def norm_vector(values:list) -> list:
length_squared = sum([x**2 for x in values])
return [x*fast_inv_sqrt(length_squared) for x in values]

13 July 2023 Python meets C/C++ Page 25



Department of Physics

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Exposing C++ classes in Cython

# distutils: language = c++
# distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, y0, x1, y1
int getLength()
int getHeight()
int getArea()
void move(int, int)

13 July 2023 Python meets C/C++ Page 26



Department of Physics

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Wrapping the class for Python

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)
def __dealloc__(self):

del self.thisptr
def getLength(self):

return self.thisptr.getLength()
def getHeight(self):

return self.thisptr.getHeight()
...

13 July 2023 Python meets C/C++ Page 26



Department of Physics

Automatic Wrappers
. . . since not everybody likes to write lines of error-prone code

I SWIG
I boost::python
I ctypes
I . . .

Goal: creating compilable C/C++ code
based on the Python C API

13 July 2023 Python meets C/C++ Page 27



Department of Physics

SWIG
SWIG: Simplified Wrapper and Interface Generator

I Generic Wrapper for C/C++ to script-like languages
I R
I Perl
I Ruby
I Tcl
I PHP5
I Java
I . . . and Python

I Pretty old – created in 1995 by Dave Beazley
I Current version is 4.0.2

13 July 2023 Python meets C/C++ Page 28



Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

13 July 2023 Python meets C/C++ Page 29



Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

13 July 2023 Python meets C/C++ Page 29



Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

13 July 2023 Python meets C/C++ Page 29



Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

13 July 2023 Python meets C/C++ Page 29



Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext
--inplace

13 July 2023 Python meets C/C++ Page 29



Department of Physics

SWIG – The interface file
Main configuration with interface (.i) files

I specify which (header) file(s) contain(s)
the C/C++ code to wrap

I define special data types
(e.g. std::vector<...>)

I handle additional configuration (e.g.
exception/error translation)

Interface file

%module geom // name of the module
...
// things swig should know about
%include "Shape.h"
%include "Rectangle.h"

// things that should be put into the
// header of the wrapper file (.c/.cxx)
%{
# include "Shape.h"
# include "Rectangle.h"
%}

13 July 2023 Python meets C/C++ Page 30



Department of Physics

SWIG – The setup.py file

setuptools setup script (setup.py)

from setuptools import setup, Extension
extension_mod = Extension("_<name>" , # Use _ to distinguish to final module name

["<name_wrap>.cxx",
"<source1>.cpp",
"<source2>.cpp","..."],

language='c++')
setup(name = "_<name>", ext_modules=[extension_mod])

I To be build extension needs a different name than the module set up by SWIG
(default: _name

I Language option only needed for C++
I python setup.py build_ext --inplace

13 July 2023 Python meets C/C++ Page 31



Department of Physics

A Few Remarks about SWIG

I SWIG ≈ performance loss with respect to cython
I If SWIG works: ,
I If it does not: /
I . . . and therefore you can lose a lot of time with special problems
I It is not always optimal to expose the whole class to Python

13 July 2023 Python meets C/C++ Page 32



Department of Physics

Conclusion

I Interfacing Python with C/C++ is – or
better – can be a way to create powerful
code

I cython and SWIG are two nice tools to
do so

I . . . but always make the interfacing
maintainable/useful/etc. i.e. not a British
train door

I And it’s all about finding the sweet spot!

13 July 2023 Python meets C/C++ Page 33



Department of Physics

The Sweet Spot!
Time spent

Code executed per compilation

Compilation

Pure code optimal Compiled code optimal

Python

Python + C/C++

13 July 2023 Python meets C/C++ Page 34



Department of Physics

The End!

[xkcd]13 July 2023 Python meets C/C++ Page 35



Department of Physics

References

1. Stéfan van der Walt, Speeding up scientific Python code using Cython, Advanced Scientific
Programming in Python, 2013 (Zurich) & 2014 (Split)

2. Stefan Behnel et al., Cython tutorial, Proceedings of the 8th Python in Science Conference (SciPy 2009)
⇒ based on older cython version, but the main reference of cython

3. Dave Beazley, Swig Master Class, PyCon’2008
4. http://docs.cython.org/src/tutorial/

5. http://www.swig.org

13 July 2023 Python meets C/C++ Page 36

http://docs.cython.org/src/tutorial/
http://www.swig.org


Department of Physics

Backup



Department of Physics

Fortran meets Python
The f2py compiler (http://docs.scipy.org/doc/numpy-dev/f2py/) offers – in a similar way as
cython – the possibility to generate extension modules for Python from Fortran code.

f2py -c -m <module name> <fortran file>.f/.f90 -I<path to python header file>
builds from the code in <fortran file>.f/.f90 a importable module (i.e. shared object)
<module name>.so

Fortran modules and subroutines are exposed to Python on time of the import of the built module.

The compilation can also be split into a first step generating a signature file, which is in a second
step compiled into the extension module

13 July 2023 Python meets C/C++ Page 38

http://docs.scipy.org/doc/numpy-dev/f2py/


Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 1

cdef extern from 'except_cy.h'
cdef void raiseException() except +

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ OK as raiseException() throws a std::exception→ RuntimeError

13 July 2023 Python meets C/C++ Page 39



Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 2

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ Not OK as raiseException() throws a std::exception which is explicitly transformed into a
MemoryError

13 July 2023 Python meets C/C++ Page 39



Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 3

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ Not OK as raiseBadAlloc() throws a std::bad_alloc which is transformed into a
MemoryError

13 July 2023 Python meets C/C++ Page 39



Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 4

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ OK as raiseBadAlloc() throws a std::bad_alloc which is transformed into a MemoryError

13 July 2023 Python meets C/C++ Page 39



Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 5

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ OK as raise_py_error() throws an error

13 July 2023 Python meets C/C++ Page 39



Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 6

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ Not OK as no error is thrown by raise_py_error()

13 July 2023 Python meets C/C++ Page 39



Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.h – Class header file

namespace shapes {
class Rectangle {
public:

int x0, y0, x1, y1;
Rectangle(int x0, int y0, int x1, int y1);
~Rectangle(); // destructor
int getLength();
int getHeight();
int getArea();
void move(int dx, int dy);

};
}

13 July 2023 Python meets C/C++ Page 40



Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.cpp – Class implementation

# include "Rectangle.h"
# include <iostream>
using namespace shapes;
Rectangle::Rectangle(int X0, int Y0, int X1, int Y1) {

x0 = X0;
y0 = Y0;
x1 = X1;
y1 = Y1;
std::cout << "Here I am" << std::endl;}

Rectangle::~Rectangle() {
std::cout << "Byebye" << std::endl;}

...

13 July 2023 Python meets C/C++ Page 40



Department of Physics

Integration of C++ Classes
Now exposing it to cython

rect_wrap.pyx – exposing the class to Cython

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)
def __dealloc__(self):

del self.thisptr
def getLength(self):

return self.thisptr.getLength()
def getHeight(self):

return self.thisptr.getHeight()
...

13 July 2023 Python meets C/C++ Page 40



Department of Physics

Integration of C++ Classes
. . . and using it!

Either in further cython code!

Using it in Cython code

def tryIt():
cdef Rectangle* r
try:

r = new Rectangle(1,2,3,4)
print("My length is {0:f}".format(r.getLength()))
print("My first x-coordinate is {0:f}".format(r.x0))

finally:
del r

13 July 2023 Python meets C/C++ Page 40



Department of Physics

Integration of C++ Classes
. . . and using it!

Or for creating a Python (wrapper) class!

Wrapping the Class

# distutils: language = c++
# distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, y0, x1, y1
int getLength()
int getHeight()
int getArea()
void move(int, int)

13 July 2023 Python meets C/C++ Page 40



Department of Physics

Special features: STL Stuff with SWIG

I Dedicated interface files need to be integrated when running SWIG
I . . . and templates for each containers + each content need to be defined

Interface file with advanced type def

...
%include "std_vector.i"
%include "std_string.i"
...
%template(dVector) std::vector<double>;
%template(rectVector) std::vector<Rectangle*>;
...

13 July 2023 Python meets C/C++ Page 41



Department of Physics

Special features: Exceptions with SWIG

Interface file with exception definition

...
%include "exception.i"
...
%exceptionclass ShapeError;
%exception *::whine {

try {
$action

} catch(ShapeError & e) {
ShapeError *ecopy = new ShapeError(e);
PyObject *err = SWIG_NewPointerObj(ecopy, SWIGTYPE_p_ShapeError, 1);
PyErr_SetObject(SWIG_Python_ExceptionType(SWIGTYPE_p_ShapeError), err);
SWIG_fail;

}
}

13 July 2023 Python meets C/C++ Page 42



Department of Physics

Special features: Overloading
Cython deals the usual way with overloaded methods in C++:

Overloading in the interface – it works

cdef extern from "Rectangle.h" namespace "shapes":
...
void move(int, int)
void move(int)

but it cannot happen in a Python wrapper class:
Overloading in the wrapper – it does not work

cdef class PyRectangle:
...
def move(self,dx,dy):

return self.thisptr.move(dx,dy)
def move(self,d):

return self.thisptr.move(d)

13 July 2023 Python meets C/C++ Page 43



Department of Physics

Special features: Inheritance
As in Python C++ classes can inherit from parent classes including overriding of methods

C++ classes – inheritance

class Shape {
public:

...
void virtual printInfo(); // Prints "Shape"

};
class Rectangle : public Shape {
public:

...
void printInfo(); // Prints "Rectangle"

};

13 July 2023 Python meets C/C++ Page 44



Department of Physics

Special features: Inheritance
Cython can also deal with this feature, but there are two points to keep in mind:
1. If parent class is also exposed to cython, no redefinition of overridden methods is required
(and also allow→ mis-interpreted as overloading)

C++ classes – inheritance wrapper

cdef class PyObject:
cdef Object* thisptr
def __cinit__(self):

self.thisptr = new Object()
def __dealloc__(self):

del self.thisptr
def printInfo(self):

self.thisptr.printInfo()
cdef class PyRectangle(PyObject):

def __cinit__(self,int x0,int y0,int x1,int y1):
self.thisptr = new Rectangle(x0,y0,x1,y1)

13 July 2023 Python meets C/C++ Page 44



Department of Physics

Special features: Inheritance
2. The inheritance can only be transported into wrapper classes if child classes have the same
set of methods as the mother class

C++ classes – inheritance exposed

cdef extern from "Rectangle.h" namespace "shapes":
cdef cppclass Shape:

Shape() except +
void printInfo()

cdef cppclass Rectangle(Shape):
Rectangle(int, int, int, int) except +
...
void printInfo() # causes problems
...

13 July 2023 Python meets C/C++ Page 44



Department of Physics

Special features: Operator Overloading
C++ as well as Python offers the potential to define operators for objects.

Example with Rectangles:

A · B

A

B

Multiplication of rectangles: Create the rectangle that is the bounding box of the two
13 July 2023 Python meets C/C++ Page 45



Department of Physics

Special features: Operator Overloading

C++ code – operator overloading

Rectangle operator*(Rectangle& rhs){
double x0_n = min(min(x0,x1),min(rhs.x0,rhs.x1)),x1_n = max(max(x0,x1),max(rhs.x0,rhs.x1));
double y0_n = min(min(y0,y1),min(rhs.y0,rhs.y1)),y1_n = max(max(y0,y1),max(rhs.y0,rhs.y1));
return Rectangle(x0_n,y0_n,x1_n,y1_n);

};

Cython wrapper – operator overloading

# to expose it to Cython
Rectangle operator*(Rectangle)
# in the wrapper class
def __mul__(PyRectangle lhs,PyRectangle rhs):

res = PyRectangle(0,0,0,0)
res.thisptr[0] = lhs.thisptr[0]*rhs.thisptr[0] # ptr deref
return res

13 July 2023 Python meets C/C++ Page 45



Department of Physics

Arrays
Arrays in cython are usually treated via typed memoryviews (e.g. double[:,:] means a
two-dimensional array of doubles, i.e. compatible with e.g. np.ones((3,4)))

Further you can specify which is the fastest changing index by :1, e.g.
I double[::1,:,:] is a F-contiguous three-dimensional array
I double[:,:,::1] is a C-contiguous three-dimensional array
I double[:,::1,:] is neither F- nor C-contiguous

For example a variable double[:,::1] a has as NumPy arrays variables like shape and size
and the elements can be accessed by a[i,j]

But be aware: NumPy is already heavily optimised, so do not to reinvent the wheel!

13 July 2023 Python meets C/C++ Page 46


	Backup

