
Nicola Chiapolini, July 10, 2023 1 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Best Practices

Nicola Chiapolini

Physik-Institut
University of Zurich

July 10, 2023

Based on talk by Valentin Haenel https://github.com/esc/best-practices-talk

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://github.com/esc/best-practices-talk
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, July 10, 2023 2 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Introduction
▶ We write code regularly
▶ We have not been formally trained

Best Practices

▶ evolved from experience
▶ increase productivity
▶ decrease stress
▶ still evolve with tools and languages

Development Methodologies

▶ e.g. Agile Programming or Test Driven Development
▶ lots of buzzwords
▶ still many helpful ideas

Nicola Chiapolini, July 10, 2023 3 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style & Documentation

Special Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, July 10, 2023 4 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style & Documentation

Special Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, July 10, 2023 5 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Coding Style

▶ readability counts (often more than brevity or speed)
▶ give things intention revealing names

▶ For example: numbers instead of n
▶ For example: numbers instead of list_of_float_numbers
▶ See also: Ottinger’s Rules for Naming

Example

def fun(n):

""" no comment """

r = 1

for i in n:

r *= i

return r

https://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, July 10, 2023 5 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Coding Style

▶ readability counts (often more than brevity or speed)
▶ give things intention revealing names

▶ For example: numbers instead of n
▶ For example: numbers instead of list_of_float_numbers
▶ See also: Ottinger’s Rules for Naming

Example

def my_product(numbers):

""" Compute the product of a sequence of numbers. """

total = 1

for item in numbers:

total *= item

return total

https://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, July 10, 2023 6 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Formatting Code

▶ use coding conventions, e.g: PEP-8
▶ conventions specify

▶ layout
▶ white-space
▶ comments
▶ naming
▶ . . .

▶ OR use a consistent style (especially when collaborating)

https://peps.python.org/pep-0008/

Nicola Chiapolini, July 10, 2023 7 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Formatting Code: Tools

Checker

▶ pylint (e.g. pylint my_product.py)
▶ pycodestyle (e.g. pycodestyle my_product.py)
▶ pydocstyle (e.g. pydocstyle my_product.py)
▶ flake8 (e.g. flake8 my_product.py)

Formatter

▶ autopep8 (e.g autopep8 --in-place my_product.py)
▶ yapf3 (e.g yapf3 --in-place my_product.py)
▶ black (e.g. black my_product.py)

https://pylint.pycqa.org/en/latest/
https://pypi.org/project/pycodestyle/
http://www.pydocstyle.org/en/latest/
https://pypi.org/project/flake8/
https://pypi.org/project/autopep8/
https://github.com/google/yapf
https://github.com/psf/black

Nicola Chiapolini, July 10, 2023 8 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Finding Bugs with Pylint

Example

def current_rotation(beta, iota, phi, sigma):

""" calculate current rotation """

return np.cos(beta)*np.cos(phi)*np.cos(sigma)

+np.sin(beta)*np.cos(phi)*np.sin(sigma)*np.cos(iota)

-np.sin(beta)*np.sin(phi)*np.sin(iota)

Nicola Chiapolini, July 10, 2023 8 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Finding Bugs with Pylint

Example

def current_rotation(beta, iota, phi, sigma):

""" calculate current rotation """

return np.cos(beta)*np.cos(phi)*np.cos(sigma)

+np.sin(beta)*np.cos(phi)*np.sin(sigma)*np.cos(iota)

-np.sin(beta)*np.sin(phi)*np.sin(iota)

[...]:7:4: W0101: Unreachable code (unreachable)

[...]:7:4: W0106: Expression "+np[...]" is assigned to nothing [...]

[...]:8:4: W0106: Expression "-np[...]" is assigned to nothing [...]

Nicola Chiapolini, July 10, 2023 9 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Documenting Code: Docstrings

Example

def my_product(numbers):

""" Compute the product of a sequence of numbers. """

▶ at least a single line
▶ also for yourself
▶ is on-line help too

▶ Document arguments and return objects, including types
▶ For complex algorithms, document every line,

and include equations in docstring
▶ Use docstring conventions: PEP257 and/or numpy

https://peps.python.org/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html

Nicola Chiapolini, July 10, 2023 10 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Example Docstring
def my_product(numbers):

""" Compute the product of a sequence of numbers.

Parameters

numbers : sequence

list of numbers to multiply

Returns

product : number

the final product

Raises

TypeError

if argument is not a sequence or sequence contains

types that can't be multiplied

"""

Nicola Chiapolini, July 10, 2023 11 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Documenting Your Project

▶ tools generate website
from docstrings
▶ pydoc
▶ sphinx
▶ Overview List

▶ when project gets bigger
▶ how-to
▶ FAQ
▶ quick-start

https://docs.python.org/3/library/pydoc.html
https://www.sphinx-doc.org/en/master/
https://wiki.python.org/moin/DocumentationTools

Nicola Chiapolini, July 10, 2023 12 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style & Documentation

Special Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, July 10, 2023 13 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

import

▶ Don’t use the star import: from module import *
▶ not obvious what you need
▶ modules may overwrite each other
▶ Where does this function come from?
▶ will import everything in a module
▶ . . . unless you have a very good reason: e.g. pylab, interactive

▶ Put all imports at the beginning of the file. . .
▶ . . . unless you have a very good reason

Example

import my_product as mp

mp.my_product([1,2,3])

from my_product import my_product

my_product([1,2,3])

Nicola Chiapolini, July 10, 2023 14 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

import: Pitfalls

Python evaluates the imported code at import time.

""" Bad Things happen here. """

def append_one(list_=[]):

""" Do not use mutable default values """

list_.append(1)

return list_

def default_arg(bad=1 / 0):

""" Do not trigger exceptions in keyword-arguments """

return bad

def constants():

""" This can not be imported in Python < 3.6 """

return 9999999 ** 9999999

Nicola Chiapolini, July 10, 2023 15 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Exceptions

▶ use try, except and raise

▶ often better then if (e.g. IndexError)

Example

try:

my_product(1, 2, 3)

except TypeError as e:

raise TypeError("'my_product' expects a sequence") from e

▶ don’t use special return values:
1, 0, False, None

▶ Fail early, fail often
▶ use built-in Exceptions

https://docs.python.org/3/library/exceptions.html

Nicola Chiapolini, July 10, 2023 16 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

assert

▶ Not intended for checks needed in production.

Example

def withdraw(balance,amount):

assert balance > amount, "Balance too small"

return balance - amount

print(withdraw(50, 100))

running: python3 withdraw.py

Traceback (most recent call last):

[...]

assert balance > amount, "Balance too small"

^^^^^^^^^^^^^^^^

AssertionError: Balance too small

Nicola Chiapolini, July 10, 2023 16 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

assert

▶ Not intended for checks needed in production.

Example

def withdraw(balance,amount):

assert balance > amount, "Balance too small"

return balance - amount

print(withdraw(50, 100))

running: python3 -O withdraw.py

Nicola Chiapolini, July 10, 2023 16 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

assert

▶ Not intended for checks needed in production.

Example

def withdraw(balance,amount):

assert balance > amount, "Balance too small"

return balance - amount

print(withdraw(50, 100))

running: python3 -O withdraw.py

-50

Nicola Chiapolini, July 10, 2023 17 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

mypy: Type Hints and Static Checking

▶ ensures variables and functions are used correctly

Example

def factorial(n):

res = 1

for i in range(1,n+1):

res *= i

return res

def concat(str1, str2):

return str1+str2

n = 4.

res = factorial(n)

concat(f"{n}! = ", res)

Nicola Chiapolini, July 10, 2023 18 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

mypy: Execute with Python

python3 factorial.py

Traceback (most recent call last):

File ".../factorial_nohint.py", line 26, in <module>

res = factorial(n)

^^^^^^^^^^^^

File ".../factorial_nohint.py", line 3, in factorial

for i in range(1,n+1):

^^^^^^^^^^^^

TypeError: 'float' object cannot be interpreted as an integer

▶ n must be integer
▶ once fixed, we get the next error: str2 must be string

Nicola Chiapolini, July 10, 2023 19 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

mypy: Adding Type Hints

▶ can add type info to variables and function definitions

Example

def factorial(n: int) -> int:

res = 1

for i in range(1,n+1):

res *= i

return res

def concat(str1: str, str2: str) -> str:

return str1+str2

n = 4.

res = factorial(n)

concat(f"{n}! = ", res)

Nicola Chiapolini, July 10, 2023 20 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

mypy: Check with mypy

python3 -m mypy factorial.py

factorial.py:15: error: Argument 1 to "factorial" has incompatible

type "float"; expected "int" [arg-type]

factorial.py:16: error: Argument 2 to "concat" has incompatible type

"int"; expected "str" [arg-type]

Found 2 errors in 1 file (checked 1 source file)

▶ spots both problems
▶ must be run separately (ideally automatically)

Nicola Chiapolini, July 10, 2023 21 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

mypy: Summary

Cons

▶ additional work for programmer
▶ defining correct types can be tricky

(type hints cheat sheet)
▶ code gets more verbose and maybe confusing

Pros

▶ prevent a lot of possible bugs
▶ valuable even if not all code covered

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Nicola Chiapolini, July 10, 2023 22 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style & Documentation

Special Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, July 10, 2023 23 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Keep it Simple (Stupid) – KIS(S) Principle

Keep it Simple

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it.
– Brian W. Kernighan

Nicola Chiapolini, July 10, 2023 24 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY)

▶ No copy & paste!

▶ Not just lines code, but knowledge of all sorts
▶ Do not express the same piece of knowledge in two places. . .
▶ . . . or you will have to update it everywhere

▶ It is not a question of if this may fail, but when

Nicola Chiapolini, July 10, 2023 25 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY): Types

Example

▶ Copy-and-paste a snippet, instead of refactoring it into a function
▶ Repeated implementation of utility methods

▶ because you don’t remember
▶ because you don’t know the libraries

numpy.prod([1,2,3])

▶ because developers don’t talk to each other
▶ Version number in source code, website, readme, package

filename

▶ If you detect duplication: refactor!

Nicola Chiapolini, July 10, 2023 26 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style & Documentation

Special Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, July 10, 2023 27 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring

▶ re-organise your code without changing its functionality

▶ rethink earlier design decisions
▶ break large code blocks apart
▶ rename and restructure code

▶ will improve the readability and modularity
▶ will usually reduce the lines of code

Nicola Chiapolini, July 10, 2023 28 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Common Refactoring Operations

▶ Rename class/method/module/package/function
▶ Move class/method/module/package/function
▶ Encapsulate code in method/function
▶ Change method/function signature
▶ Organise imports (remove unused and sort)
▶ Always refactor one step at a time, and ensure code still works

▶ version control
▶ unit tests

Nicola Chiapolini, July 10, 2023 29 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

def product_minus_sum(numbers):

""" Subtract sum of numbers from product of numbers. """

total = 0

for item in numbers:

total += item

total2 = 1

for item in numbers:

total2 *= item

return total - total2

▶ split into functions
▶ use libraries/built-ins
▶ fix bug

Nicola Chiapolini, July 10, 2023 29 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from my_math import my_product, my_sum

def product_minus_sum(numbers):

""" Subtract sum of numbers from product of numbers. """

sum_value = my_sum(numbers)

product_value = my_product(numbers)

return sum_value - product_value

▶ split into functions
▶ use libraries/built-ins
▶ fix bug

Nicola Chiapolini, July 10, 2023 29 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from numpy import prod, sum

def product_minus_sum(numbers):

""" Subtract sum of numbers from product of numbers. """

sum_value = sum(numbers)

product_value = prod(numbers)

return sum_value - product_value

▶ split into functions
▶ use libraries/built-ins
▶ fix bug

Nicola Chiapolini, July 10, 2023 29 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from numpy import prod, sum

def product_minus_sum(numbers):

""" Subtract sum of numbers from product of numbers. """

sum_value = sum(numbers)

product_value = prod(numbers)

return product_value - sum_value

▶ split into functions
▶ use libraries/built-ins
▶ fix bug

Nicola Chiapolini, July 10, 2023 30 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style & Documentation

Special Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, July 10, 2023 31 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

What is a Development Methodology?

Consists of:

▶ process used for development
▶ tools to support this process

Help answer questions like:

▶ How far ahead should I plan?
▶ What should I prioritise?
▶ When do I write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, July 10, 2023 31 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

What is a Development Methodology?

Consists of:

▶ process used for development
▶ tools to support this process

Help answer questions like:

▶ How far ahead should I plan?
▶ What should I prioritise?
▶ When do I write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, July 10, 2023 32 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

The Waterfall Model, Royce 1970

▶ sequential
▶ from manufacturing and construction

Nicola Chiapolini, July 10, 2023 33 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Agile Methods (late 90’s)

▶ minimal planning, small development iterations
▶ frequent input from environment
▶ very adaptive, since nothing is set in stone

Nicola Chiapolini, July 10, 2023 34 / 34

Introduction Style & Documentation Special Statements KIS(S) & DRY Refactoring Development Methodologies

Test Driven Development (TDD)

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

▶ Define unit tests first!
▶ Develop one unit at a time!

▶ more tomorrow

Nicola Chiapolini, July 10, 2023 1 / 1

Virtualenv

An Almost Unrelated Note: Using VirtualEnv

The Problem

▶ different tools need different versions of a module
▶ your Linux distribution does not include a module

The Solution: virtualenv

▶ initialise folder school_venv to store modules of this project
python -m venv --system-site-packages ~/venv

▶ update the search-paths to include folders in ~/venv

. venv/bin/activate

▶ run your code or install libraries with pip
▶ undo changes to search-paths

deactivate

	Introduction
	Style & Documentation
	Special Statements
	KIS(S) & DRY
	Refactoring
	Development Methodologies
	Appendix
	Virtualenv

