
Refugees

July 12, 2022

1 Pandas
• https://pandas.pydata.org
• very high-level data containers with corresponding functionality
• many useful tools to work with time-series (look at Series.rolling)
• many SQL-like data operations (group, join, merge)
• Interface to a large variety of file formats (see pd.read_[...] functions)
• additional package with data-interface/API to many data repositories (https://pandas-

datareader.readthedocs.io/en/latest/remote_data.html)

[1]: import pandas as pd

1.1 Basic Data Structures
1.1.1 Series

One-dimensional ndarray with axis labels (called index).

Series can be created like an array

[2]: pd.Series([11,13,17,19,23])

[2]: 0 11
1 13
2 17
3 19
4 23
dtype: int64

or, if you want a special index

[3]: series = pd.Series([11,13,17,19,23], index=['a', 'b', 'c', 'd', 'e'])
print(series)

a 11
b 13
c 17
d 19
e 23
dtype: int64

1

to get the content back you can use

[4]: series.index

[4]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

[5]: series.values

[5]: array([11, 13, 17, 19, 23])

but the power of pandas lies in all the other attributes

[6]: #series. [TAB]

1.1.2 DataFrame

The primary pandas data structure.

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes.
(index: row labels, columns: column labels) Can be thought of as a dict-like container for Series
objects.

The easiest way to create a DataFrame is to read it from an input file (see later)

In addition there are many ways to create DataFrames manually. Most straight forward probably
is to use a dict of iterables. (Series, Lists, Arrays). Pandas tries to choose sensible indexes.

[7]: frame = pd.DataFrame({"primes": series, "fibo": [1,1,2,3,5], "0-4": range(5)})

[8]: print(frame)

primes fibo 0-4
a 11 1 0
b 13 1 1
c 17 2 2
d 19 3 3
e 23 5 4

2 Refugee Example
We now want to use pandas to work with data from the World Bank. My goal is to create a plot
showing the burden refugees put on different countries. For this we will plot the fraction of refugee
in a give countries population versus that countries GDP.

I downloaded and extracted the following data-sets from the Worldbank
website manually: * Refugee population by country or territory of asy-
lum: https://data.worldbank.org/indicator/SM.POP.REFG * Population, total:
https://data.worldbank.org/indicator/SP.POP.TOTL * GDP per capita (current US$):
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

2

[9]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2.1 Loading and Accessing Data
loading a data file with pandas is trivial

[10]: refugees = pd.read_csv("data/refugee-population.csv", skiprows=4)

[11]: refugees.head()

[11]: Country Name Country Code \
0 Aruba ABW
1 Afghanistan AFG
2 Angola AGO
3 Albania ALB
4 Andorra AND

Indicator Name Indicator Code 1960 \
0 Refugee population by country or territory of … SM.POP.REFG NaN
1 Refugee population by country or territory of … SM.POP.REFG NaN
2 Refugee population by country or territory of … SM.POP.REFG NaN
3 Refugee population by country or territory of … SM.POP.REFG NaN
4 Refugee population by country or territory of … SM.POP.REFG NaN

1961 1962 1963 1964 1965 … 2011 2012 2013 2014 \
0 NaN NaN NaN NaN NaN … NaN NaN 1.0 NaN
1 NaN NaN NaN NaN NaN … 3009.0 16187.0 16863.0 300423.0
2 NaN NaN NaN NaN NaN … 16223.0 23413.0 23783.0 15474.0
3 NaN NaN NaN NaN NaN … 82.0 86.0 93.0 104.0
4 NaN NaN NaN NaN NaN … NaN NaN NaN NaN

2015 2016 2017 2018 2019 Unnamed: 64
0 2.0 1.0 NaN NaN NaN NaN
1 257554.0 59771.0 75927.0 72231.0 NaN NaN
2 15555.0 15555.0 41109.0 39865.0 NaN NaN
3 104.0 138.0 89.0 131.0 NaN NaN
4 NaN NaN NaN NaN NaN NaN

[5 rows x 65 columns]

As you can see pandas choose the right column labels and numbered the rows continously.

We can easily change the row labels (the index) to one of the columns.

[12]: refugees.set_index(["Country Code"], inplace=True)

3

[13]: refugees.head()

[13]: Country Name Indicator Name \
Country Code
ABW Aruba Refugee population by country or territory of …
AFG Afghanistan Refugee population by country or territory of …
AGO Angola Refugee population by country or territory of …
ALB Albania Refugee population by country or territory of …
AND Andorra Refugee population by country or territory of …

Indicator Code 1960 1961 1962 1963 1964 1965 1966 … \
Country Code …
ABW SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …
AFG SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …
AGO SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …
ALB SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …
AND SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …

2011 2012 2013 2014 2015 2016 2017 \
Country Code
ABW NaN NaN 1.0 NaN 2.0 1.0 NaN
AFG 3009.0 16187.0 16863.0 300423.0 257554.0 59771.0 75927.0
AGO 16223.0 23413.0 23783.0 15474.0 15555.0 15555.0 41109.0
ALB 82.0 86.0 93.0 104.0 104.0 138.0 89.0
AND NaN NaN NaN NaN NaN NaN NaN

2018 2019 Unnamed: 64
Country Code
ABW NaN NaN NaN
AFG 72231.0 NaN NaN
AGO 39865.0 NaN NaN
ALB 131.0 NaN NaN
AND NaN NaN NaN

[5 rows x 64 columns]

Now it’s easy to select rows or columns

[14]: refugees.loc[["CHE","DEU"]]

[14]: Country Name Indicator Name \
Country Code
CHE Switzerland Refugee population by country or territory of …
DEU Germany Refugee population by country or territory of …

Indicator Code 1960 1961 1962 1963 1964 1965 1966 … \
Country Code …

4

CHE SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …
DEU SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN …

2011 2012 2013 2014 2015 2016 \
Country Code
CHE 50416.0 50747.0 52464.0 62620.0 73336.0 82681.0
DEU 571684.0 589737.0 187567.0 216973.0 316115.0 669482.0

2017 2018 2019 Unnamed: 64
Country Code
CHE 92995.0 104037.0 NaN NaN
DEU 970302.0 1063837.0 NaN NaN

[2 rows x 64 columns]

[15]: refugees[["1990","2000"]].head()

[15]: 1990 2000
Country Code
ABW NaN NaN
AFG 50.0 NaN
AGO 11557.0 12086.0
ALB NaN 523.0
AND NaN NaN

[16]: refugees.get(["1990","2000"]).head()

[16]: 1990 2000
Country Code
ABW NaN NaN
AFG 50.0 NaN
AGO 11557.0 12086.0
ALB NaN 523.0
AND NaN NaN

2.2 Working with a Single Country
With this we now choose the data for one country, remove all missing values and then create a plot:

[17]: che = refugees.loc["CHE"][[str(year) for year in range(1990,2020)]]

[18]: che.dropna().plot()
plt.show()

5

Usually it is easier to work with real datetime objects instead of strings. So we convert the index
to datetime

[19]: che.index.values

[19]: array(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
'2014', '2015', '2016', '2017', '2018', '2019'], dtype=object)

[20]: che.index = pd.to_datetime(che.index, format="%Y")
print(che.index)

DatetimeIndex(['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01',
'1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01',
'1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01',
'2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01',
'2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
'2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
'2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01',
'2018-01-01', '2019-01-01'],
dtype='datetime64[ns]', freq=None)

As mentioned in the introduction, pandas offers a very usefull rolling method

[21]: che.plot()
che.rolling(center=False,window=5).mean().plot()

6

plt.show()

2.3 Removing Unwanted Data
We now want to create a scatter plot with refugees divided by gdp vs. gdp-per-captita. For each
data set we will use the mean of the last 7 years.

Some of the rows and columns in the World-Bank Files are of no interest for this. We can remove
these easily.

2.3.1 Excluding Non-Countries

The World-Bank provides meta-data for each country, where we can identify rows with non-
countries (e.g. regional aggregates)

[22]: !head data/metadata-countries_population.csv

7

We load this file and extract the two relevant columns

[23]: meta = pd.read_csv("data/metadata-countries_population.csv")

[24]: meta.columns

[24]: Index(['Country Code', 'Region', 'IncomeGroup', 'SpecialNotes', 'TableName',
'Unnamed: 5'],
dtype='object')

[25]: meta = meta[['Country Code', 'Region']]

[26]: meta.head()

[26]: Country Code Region
0 ABW Latin America & Caribbean
1 AFG South Asia
2 AGO Sub-Saharan Africa
3 ALB Europe & Central Asia
4 AND Europe & Central Asia

[27]: meta.set_index("Country Code", inplace=True)

From this we create a list of non-countries

[28]: non_countries = meta.loc[meta.Region.isnull()].index
print(non_countries)

Index(['ARB', 'CEB', 'CSS', 'EAP', 'EAR', 'EAS', 'ECA', 'ECS', 'EMU', 'EUU',
'FCS', 'HIC', 'HPC', 'IBD', 'IBT', 'IDA', 'IDB', 'IDX', 'LAC', 'LCN',
'LDC', 'LIC', 'LMC', 'LMY', 'LTE', 'MEA', 'MIC', 'MNA', 'NAC', 'OED',
'OSS', 'PRE', 'PSS', 'PST', 'SAS', 'SSA', 'SSF', 'SST', 'TEA', 'TEC',
'TLA', 'TMN', 'TSA', 'TSS', 'UMC', 'WLD'],
dtype='object', name='Country Code')

and finally exclude the relevant rows

[29]: refugees = refugees.drop(non_countries)

2.3.2 Excluding Columns

The data contains a few rows with unneeded text

[30]: refugees.columns

[30]: Index(['Country Name', 'Indicator Name', 'Indicator Code', '1960', '1961',
'1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',
'1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979',
'1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',

8

'1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
'2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
'2016', '2017', '2018', '2019', 'Unnamed: 64'],
dtype='object')

In addition, the 2019 column is empty

[31]: np.any(refugees["2019"].notnull())

[31]: False

so we can create a list of all interesting columns

[32]: useful_cols = []
for year in range(2010,2019):

useful_cols.append(str(year))

[33]: useful_cols

[33]: ['2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018']

with this, we:

• select the reduced datase
• switch the index to Country Code
• calculate the mean for each country

[34]: refugees = refugees[useful_cols]

[35]: refugee_means = refugees.mean(axis=1)

2.4 Loading Additional Files
Of course we could execute these commands again manually for the two remaining data-files.
However, the proper way to solve this is to create a function for this. Especially since all files have
the exact same structure.

[36]: def load_file(file):
"""Load and process a Worldbank File"""
data = pd.read_csv(file, skiprows=4)
data.set_index("Country Code", inplace=True)
data.drop(non_countries, inplace=True)
data = data[[str(year) for year in range(2010,2017)]]
return data.mean(axis=1), data

[37]: gdp_means, gdp = load_file("data/gdp-per-capita.csv")

[38]: gdp_means.head()

9

[38]: Country Code
ABW 24972.420561
AFG 593.293323
AGO 4519.970434
ALB 4263.977328
AND 39345.839439
dtype: float64

[39]: gdp.head()

[39]: 2010 2011 2012 2013 \
Country Code
ABW 23512.602596 24985.993281 24713.698045 25025.099563
AFG 543.303042 591.162346 641.872034 637.165044
AGO 3587.883798 4615.468028 5100.095808 5254.882338
ALB 4094.362119 4437.178067 4247.614279 4413.081743
AND 39736.354063 41100.729938 38392.943901 40626.751632

2014 2015 2016
Country Code
ABW 25533.569780 25796.380251 25239.600411
AFG 613.856333 578.466353 547.228110
AGO 5408.410496 4166.979684 3506.072885
ALB 4578.666720 3952.829458 4124.108907
AND 42300.334128 36039.653496 37224.108916

[40]: population_means, population = load_file("data/population.csv")

2.5 Creating the Plot
We now combine our three Series with means into one DataFrame and create our plot.

[41]: data = pd.DataFrame({"gdp": gdp_means, "refugees": refugee_means/
↪population_means}).dropna()

(Here we loose some countries with missing data.)

[42]: data.plot.scatter("gdp", "refugees")
plt.show()

10

We can quickly find out who the three top countries are:

[43]: data.where(data["refugees"]>0.1).dropna()

[43]: gdp refugees
Country Code
JOR 3951.958197 0.317788
LBN 7766.668886 0.194719
PSE 2861.802636 0.508273

To improve readability:

• we switch to a log-log axis (we need to exclude countries with too small refugee numbers)
• we highlight one selected country
• We add a title

[44]: ax = data[data["refugees"] > 1e-10].plot.scatter(y="refugees", x="gdp",␣
↪loglog=True)

ax = data.loc[["CHE"]].plot.scatter(y="refugees", x="gdp", ax=ax, color="r",␣
↪label="Switzerland")

plt.title("refugees fraction vs. gdp")
plt.show()

11

again we can print the info for one country

[45]: data.loc["CHE"]

[45]: gdp 82933.055377
refugees 0.008484
Name: CHE, dtype: float64

2.5.1 Highlighting a Full Region

Based on th meta data provided by the World Bank, we can highlight a region

[46]: europe = meta.loc[meta.Region == "Europe & Central Asia"].index

[47]: europe[:10]

[47]: Index(['ALB', 'AND', 'ARM', 'AUT', 'AZE', 'BEL', 'BGR', 'BIH', 'BLR', 'CHE'],
dtype='object', name='Country Code')

[48]: ax = data[data["refugees"] > 1e-10].plot.scatter(y="refugees", x="gdp",␣
↪loglog=True)

ax = data.loc[data.index.intersection(europe)].plot.scatter(y="refugees",␣
↪x="gdp", ax=ax, color="r", label="Europe & Central Asia")

plt.title("refugees fraction vs. gdp")

12

plt.show()

(As we lost some countries with missing data when we called dropna above, we need the
data.index.intersection-call to select only country codes really contained in our data.)

2.6 Fitting
We now look at a tiny subset of this data and look at ways to fit a function to it.

Scipy preparse a huge number of options, we will look at three options of increasing complexity
and flexibility.

2.6.1 Preparations

first we select our subset

[49]: europe_small = ['AUT',
'DEU',
'FRA',
'ITA',
]

[50]: data_eu = data.loc[europe_small].dropna()

13

[51]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
plt.title("refugees fraction vs. gdp")
plt.show()

and we create a vector with all the x values we will need to plot our fit result

[52]: x = np.linspace(data_eu["gdp"].min(), data_eu["gdp"].max(), 100)

2.6.2 polyfit

Polyfit is probably the easiest way to fit a polynome to given data.

[53]: from numpy import polyfit, polyval

[54]: res = polyfit(data_eu["gdp"], data_eu["refugees"],1)
print(res)

[5.20472464e-07 -1.64261467e-02]

[55]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, polyval(res, x))
plt.title("refugees fraction vs. gdp")
plt.show()

14

2.6.3 curve_fit

With curve_fit you can define a complex fit function.

[56]: from scipy.optimize import curve_fit

[57]: def fit_function(x,b,c):
return b*x+c

[58]: res = curve_fit(fit_function, data_eu["gdp"], data_eu["refugees"])
print(res)

(array([5.20472463e-07, -1.64261467e-02]), array([[3.86848840e-15,
-1.62289029e-10],

[-1.62289029e-10, 6.90771771e-06]]))

[59]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, *(res[0])))
plt.title("refugees fraction vs. gdp")
plt.show()

15

2.6.4 leastsq

Finally, least-squares allows you to even specify the cost function. With this you can factor in
uncertainties or weights for your data points.

[60]: from scipy.optimize import leastsq

[61]: def fit_function(x, p):
return x*p[0]+p[1]

[62]: def error_function(params):
return data_eu["refugees"] - fit_function(data_eu["gdp"], params)

[63]: res = leastsq(error_function, [0,0])
print(res)

(array([5.20472464e-07, -1.64261467e-02]), 3)

[64]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, res[0]))
plt.title("refugees fraction vs. gdp")
plt.show()

16

2.6.5 statsmodels

[65]: import statsmodels.formula.api as smf

[66]: res = smf.ols("refugees ~ gdp", data=data_eu).fit()

[67]: print(res.summary())

OLS Regression Results
==
Dep. Variable: refugees R-squared: 0.972
Model: OLS Adj. R-squared: 0.958
Method: Least Squares F-statistic: 70.03
Date: Tue, 12 Jul 2022 Prob (F-statistic): 0.0140
Time: 07:41:24 Log-Likelihood: 25.185
No. Observations: 4 AIC: -46.37
Df Residuals: 2 BIC: -47.60
Df Model: 1
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
Intercept -0.0164 0.003 -6.250 0.025 -0.028 -0.005
gdp 5.205e-07 6.22e-08 8.368 0.014 2.53e-07 7.88e-07

17

==
Omnibus: nan Durbin-Watson: 3.279
Prob(Omnibus): nan Jarque-Bera (JB): 0.402
Skew: -0.551 Prob(JB): 0.818
Kurtosis: 1.905 Cond. No. 3.52e+05
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
[2] The condition number is large, 3.52e+05. This might indicate that there are
strong multicollinearity or other numerical problems.

/usr/lib/python3/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning:
omni_normtest is not valid with less than 8 observations; 4 samples were given.

warn("omni_normtest is not valid with less than 8 observations; %i "

[68]: print(res.params)

Intercept -1.642615e-02
gdp 5.204725e-07
dtype: float64

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, res.params[1]*x+res.params[0])
plt.title("refugees fraction vs. gdp")
plt.show()

18

2.7 Appendix: Selecting from DataFrames
2.7.1 Accessing Rows

Passing a single value to loc returns a Series

[70]: frame.loc["a"]

[70]: primes 11
fibo 1
0-4 0
Name: a, dtype: int64

Passing a list to loc returns a DataFrame (even if the list contains a single a single value)

[71]: frame.loc[["a"]]

[71]: primes fibo 0-4
a 11 1 0

[72]: frame.loc[["a","c"]]

[72]: primes fibo 0-4
a 11 1 0
c 17 2 2

Also slicing works (but includes the upper boundary)

[73]: frame.loc["b":"d"]

[73]: primes fibo 0-4
b 13 1 1
c 17 2 2
d 19 3 3

A list of boolean values with n-Rows entries, is considered a mask to select rows

[74]: frame.loc[[True,False,True,False,True]]

[74]: primes fibo 0-4
a 11 1 0
c 17 2 2
e 23 5 4

Instead of a list, a boolean-series can be used. Rows are matched on the index.
(frame[["primes"]] > 20 would not work as this returns a frame instead of a series.)

19

[75]: frame.loc[frame["primes"] > 20]

[75]: primes fibo 0-4
e 23 5 4

When using a mask, .loc is optional (but recommended to avoid confusion with columns).

[76]: frame[frame["primes"] > 20]

[76]: primes fibo 0-4
e 23 5 4

Using iloc it is possible to access rows by position as well. (without using the index)

[77]: frame.iloc[2:-1]

[77]: primes fibo 0-4
c 17 2 2
d 19 3 3

2.7.2 Accessing Columns

The frame is subscripted directly. Again, passing a singel value returns a series.

[78]: frame["primes"]

[78]: a 11
b 13
c 17
d 19
e 23
Name: primes, dtype: int64

While a list returns a DataFrame

[79]: frame[["primes"]]

[79]: primes
a 11
b 13
c 17
d 19
e 23

[80]: frame[["primes","0-4"]]

[80]: primes 0-4
a 11 0

20

b 13 1
c 17 2
d 19 3
e 23 4

Instead of subscripting, the get-method can be used.

[81]: frame.get(["primes","0-4"])

[81]: primes 0-4
a 11 0
b 13 1
c 17 2
d 19 3
e 23 4

For single columns, an attribute with the same name exists

[82]: frame.primes

[82]: a 11
b 13
c 17
d 19
e 23
Name: primes, dtype: int64

But this fails, if the column-name is not a valid attribute-name

[83]: # Raises SyntaxError
#frame.0-4

For even more options have a look at the pandas-website: https://pandas.pydata.org/pandas-
docs/stable/indexing.html

21

	Pandas
	Basic Data Structures
	Series
	DataFrame

	Refugee Example
	Loading and Accessing Data
	Working with a Single Country
	Removing Unwanted Data
	Excluding Non-Countries
	Excluding Columns

	Loading Additional Files
	Creating the Plot
	Highlighting a Full Region

	Fitting
	Preparations
	polyfit
	curve_fit
	leastsq
	statsmodels

	Appendix: Selecting from DataFrames
	Accessing Rows
	Accessing Columns

