Refugees
July 12, 2022

1 Pandas

o https://pandas.pydata.org

o very high-level data containers with corresponding functionality

« many useful tools to work with time-series (look at Series.rolling)

o many SQL-like data operations (group, join, merge)

o Interface to a large variety of file formats (see pd.read_[...] functions)

» additional package with data-interface/API to many data repositories (https://pandas-
datareader.readthedocs.io/en/latest /remote__data.html)

[1]: | import pandas as pd

1.1 Basic Data Structures

1.1.1 Series

One-dimensional ndarray with axis labels (called index).
Series can be created like an array

[2]: pd.Series([11,13,17,19,23])

[2]: 0 11
1 13
2 17
3 19
4 23

dtype: int64

or, if you want a special index

[3]: series = pd.Series([11,13,17,19,23], index=['a', 'b', 'c', 'd', 'e'])
print(series)

a 11
b 13
c 17
d 19
e 23

dtype: int64



[4] :

[4] :

[5]:

[5]:

[6]:

[7]:

[8]:

to get the content back you can use

series.index

Index(['a', 'b', 'c', 'd', 'e']l, dtype='object')
series.values

array([11, 13, 17, 19, 23])

but the power of pandas lies in all the other attributes

#series. [TAB]

1.1.2 DataFrame
The primary pandas data structure.

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes.
(index: row labels, columns: column labels) Can be thought of as a dict-like container for Series
objects.

The easiest way to create a DataFrame is to read it from an input file (see later)

In addition there are many ways to create DataFrames manually. Most straight forward probably
is to use a dict of iterables. (Series, Lists, Arrays). Pandas tries to choose sensible indexes.

frame = pd.DataFrame({"primes": series, "fibo": [1,1,2,3,5], "0-4": range(5)})

print (frame)

primes fibo 0-4
a 11 1 0
b 13 1 1
C 17 2 2
d 19 3 3
e 23 5 4

2 Refugee Example

We now want to use pandas to work with data from the World Bank. My goal is to create a plot
showing the burden refugees put on different countries. For this we will plot the fraction of refugee
in a give countries population versus that countries GDP.

I  downloaded and extracted the following data-sets from the  Worldbank
website  manually: *  Refugee population by country or territory of asy-
lum: https://data.worldbank.org/indicator/SM.POP.REFG ~ *  Population, total:
https://data.worldbank.org/indicator/SP.POP.TOTL * GDP per capita (current USS$):
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD



[9]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2.1 Loading and Accessing Data
loading a data file with pandas is trivial

[10]: refugees = pd.read_csv("data/refugee-population.csv", skiprows=4)
[11]: refugees.head()

[11]: Country Name Country Code \

0 Aruba ABW
1 Afghanistan AFG
2 Angola AGO
3 Albania ALB
4 Andorra AND
Indicator Name Indicator Code 1960 \
0 Refugee population by country or territory of .. SM.POP.REFG  NaN
1 Refugee population by country or territory of .. SM.POP.REFG  NaN
2 Refugee population by country or territory of .. SM.POP.REFG  NaN
3 Refugee population by country or territory of .. SM.POP.REFG  NaN
4 Refugee population by country or territory of .. SM.POP.REFG  NaN
1961 1962 1963 1964 1965 .. 2011 2012 2013 2014 \

O NaN NaN NaN NaN NaN .. NaN NaN 1.0 NaN
1 NaN NaN NaN NaN NaN .. 3009.0 16187.0 16863.0 300423.0
2 NaN NaN NaN NaN NaN .. 16223.0 23413.0 23783.0 15474.0
3 NaN NaN NaN NaN NaN .. 82.0 86.0 93.0 104.0
4 NaN NaN NaN NaN NaN .. NaN NaN NaN NaN

2015 2016 2017 2018 2019 Unnamed: 64
0 2.0 1.0 NaN NaN  NaN NaN
1 257554.0 59771.0 75927.0 72231.0 NaN NaN
2 155565.0 15555.0 41109.0 39865.0 NaN NaN
3 104.0 138.0 89.0 131.0 NaN NaN
4 NaN NaN NaN NaN  NaN NaN

[6 rows x 65 columns]

As you can see pandas choose the right column labels and numbered the rows continously.

We can easily change the row labels (the index) to one of the columns.

[12]:  refugees.set_index(["Country Code"], inplace=True)



[13]:

[13]:

[14]:

refugees.head ()

Country Name

Country Code

Indicator Name

ABW Aruba Refugee population by country or territory of ..
AFG Afghanistan Refugee population by country or territory of ..
AGO Angola Refugee population by country or territory of ..
ALB Albania Refugee population by country or territory of ..
AND Andorra Refugee population by country or territory of ..
Indicator Code 1960 1961 1962 1963 1964 1965 1966 \
Country Code
ABW SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AFG SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AGO SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
ALB SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
AND SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
2011 2012 2013 2014 2015 2016 2017
Country Code
ABW NaN NaN 1.0 NaN 2.0 1.0 NaN
AFG 3009.0 16187.0 16863.0 300423.0 257554.0 ©59771.0 75927.0
AGO 16223.0 23413.0 23783.0 15474.0  15555.0 15555.0 41109.0
ALB 82.0 86.0 93.0 104.0 104.0 138.0 89.0
AND NaN NaN NaN NaN NaN NaN NaN
2018 2019 TUnnamed: 64
Country Code
ABW NaN  NaN NaN
AFG 72231.0  NaN NaN
AGO 39865.0  NaN NaN
ALB 131.0 NaN NaN
AND NaN  NaN NaN
[5 rows x 64 columns]
Now it’s easy to select rows or columns
[14]: refugees.loc[["CHE","DEU"]]
Country Name Indicator Name
Country Code
CHE Switzerland Refugee population by country or territory of ..
DEU Germany Refugee population by country or territory of ..
Indicator Code 1960 1961 1962 1963 1964 1965 1966 \

Country Code

\

\



CHE SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN

DEU SM.POP.REFG NaN NaN NaN NaN NaN NaN NaN
2011 2012 2013 2014 2015 2016\
Country Code
CHE 50416.0 50747.0 52464.0 62620.0 73336.0 82681.0
DEU 571684.0 589737.0 187567.0 216973.0 316115.0 669482.0
2017 2018 2019 TUnnamed: 64
Country Code
CHE 92995.0  104037.0  NaN NaN
DEU 970302.0 1063837.0  NaN NaN

[2 rows x 64 columns]

[15]: refugees[["1990","2000"]1] .head()

[156]: 1990 2000
Country Code
ABW NaN NaN
AFG 50.0 NaN
AGO 11557.0 12086.0
ALB NaN 523.0
AND NaN NaN

[16]: refugees.get(["1990","2000"]) .head()

[16]: 1990 2000
Country Code
ABW NaN NaN
AFG 50.0 NaN
AGO 11557.0 12086.0
ALB NaN 523.0
AND NaN NaN

2.2 Working with a Single Country
With this we now choose the data for one country, remove all missing values and then create a plot:

[17]: che = refugees.loc["CHE"] [[str(year) for year in range(1990,2020)]1]

[18]: che.dropna() .plot()
plt.show()



100000 1

20000 1

BOOO0O -

70000 -

60000

50000 4

40000 1

1990 1995 2000 2005 2010 2015

Usually it is easier to work with real datetime objects instead of strings. So we convert the index
to datetime

[19]: | che.index.values

[19]: array(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
'2014', '2015', '2016', '2017', '2018', '2019'], dtype=object)

[20]: che.index = pd.to_datetime(che.index, format="%Y")
print(che.index)

DatetimeIndex(['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01',
'1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01',
'1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01',
'2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01',
'2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
'2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
'2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01',
'2018-01-01', '2019-01-01'],

dtype='datetime64[ns]', freq=None)

As mentioned in the introduction, pandas offers a very usefull rolling method

[21]: che.plot()
che.rolling(center=False,window=5) .mean() .plot ()



plt.show()

100000 1

90000 -

BOO0O -

70000 1

60000 1

50000 4

40000 A
I I I I I
1990 1995 2000 2005 2010 2015

2.3 Removing Unwanted Data

We now want to create a scatter plot with refugees divided by gdp vs. gdp-per-captita. For each
data set we will use the mean of the last 7 years.

Some of the rows and columns in the World-Bank Files are of no interest for this. We can remove
these easily.
2.3.1 Excluding Non-Countries

The World-Bank provides meta-data for each country, where we can identify rows with non-
countries (e.g. regional aggregates)

[22] : | 'head data/metadata-countries_population.csv



We load this file and extract the two relevant columns

[23]: meta = pd.read_csv("data/metadata-countries_population.csv")
[24]: meta.columns
[24]: Index(['Country Code', 'Region', 'IncomeGroup', 'SpecialNotes', 'TableName',
'Unnamed: 5'],
dtype="'object')

[25]: meta = metal[['Country Code', 'Region'l]]

[26]: meta.head()

[26]:  Country Code Region
0 ABW Latin America & Caribbean
1 AFG South Asia
2 AGO Sub-Saharan Africa
3 ALB Europe & Central Asia
4 AND Europe & Central Asia

[27]: meta.set_index("Country Code", inplace=True)

From this we create a list of non-countries

[28]: non_countries = meta.loc[meta.Region.isnull()].index
print(non_countries)

Index(['ARB', 'CEB', 'CSS', 'EAP', 'EAR', 'EAS', 'ECA', 'ECS', 'EMU', 'EUU',
'FCS', 'HIC', 'HPC', 'IBD', 'IBT', 'IDA', 'IDB', 'IDX', 'LAC', 'LCN',
'pc', 'Lic', 'Lmc', 'LMY', 'LTE', 'MEA', 'MIC', 'MNA', 'NAC', 'OED',
'0Ss', 'PRE', 'PSS', 'PST', 'SAS', 'SSA', 'SSF', 'SST', 'TEA', 'TEC',
'"TLA', 'TMN', 'TSA', 'TSS', 'UMC', 'WLD'],
dtype='object', name='Country Code')
and finally exclude the relevant rows

[29] : refugees = refugees.drop(non_countries)

2.3.2 Excluding Columns
The data contains a few rows with unneeded text
[30]: refugees.columns
[30] : Index(['Country Name', 'Indicator Name', 'Indicator Code', '1960', '1961',
'1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',

‘1971, '19v2', '1973', '1974', '1975', '19ve6', '1977', '1978', '1979',
'1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',



[31]:

[31]:

[32]:

[33]:

[33]:

[34] :

[35]:

[36]:

[37]:

[38]:

'1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
'2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',

'2016', '2017', '2018', '2019', 'Unnamed: 64'],
dtype="'object')

In addition, the 2019 column is empty
np.any (refugees["2019"] .notnull())

False

so we can create a list of all interesting columns

useful_cols = []
for year in range(2010,2019):
useful_cols.append(str(year))

useful_cols
['2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017',

with this, we:

o select the reduced datase
e switch the index to Country Code
e calculate the mean for each country

refugees = refugees[useful_cols]

refugee_means = refugees.mean(axis=1)

2.4 Loading Additional Files

'2018"']

Of course we could execute these commands again manually for the two remaining data-files.
However, the proper way to solve this is to create a function for this. Especially since all files have

the exact same structure.

def load_file(file):
"""Load and process a Worldbank File
data = pd.read_csv(file, skiprows=4)
data.set_index("Country Code", inplace=True)
data.drop(non_countries, inplace=True)
data = datal[[str(year) for year in range(2010,2017)]]
return data.mean(axis=1), data

nimnn

gdp_means, gdp = load_file("data/gdp-per-capita.csv")

gdp_means.head ()



[38]: Country Code
ABW 24972 .420561

AFG 593.293323
AGO 4519.970434
ALB 4263.977328

AND 39345.839439
dtype: float64

[39]: gdp.head()

[39]: 2010 2011 2012 2013 \

Country Code

ABW 23512.602596 24985.993281 24713.698045 25025.099563

AFG 543.303042 591.162346 641.872034 637.165044

AGO 3587.883798  4615.468028 5100.095808  5254.882338

ALB 4094 .362119  4437.178067  4247.614279  4413.081743

AND 39736.354063 41100.729938 38392.943901 40626.751632
2014 2015 2016

Country Code

ABW 25533.569780 25796.380251 25239.600411

AFG 613.856333 578.466353 547.228110

AGO 5408.410496 4166.979684  3506.072885

ALB 4578.666720  3952.829458  4124.108907

AND 42300.334128 36039.653496 37224.108916

[40] : population_means, population = load_file("data/population.csv")

2.5 Creating the Plot
We now combine our three Series with means into one DataFrame and create our plot.

[41]: data = pd.DataFrame({"gdp": gdp_means, "refugees": refugee_means/
opopulation_means}) .dropna()

(Here we loose some countries with missing data.)

[42]: data.plot.scatter("gdp", "refugees")
plt.show()

10



054 *
0.4 -

[ ]
n 0.3 1
i E]
n
2
B 02 ™
0.1 -

[ ]
0.0 - Monecncannds o . .o

I I I I I I I
0 25000 50000 75000 100000 125000 150000 175000
gdp

We can quickly find out who the three top countries are:

[43]: data.where(data["refugees"]>0.1).dropna()

[43]: gdp refugees
Country Code
JOR 3951.958197 0.317788
LBN 7766.668886 0.194719
PSE 2861.802636 0.508273

To improve readability:

o we switch to a log-log axis (we need to exclude countries with too small refugee numbers)
e we highlight one selected country
o We add a title

[44] : ax = datal[data["refugees"] > 1le-10] .plot.scatter(y="refugees", x="gdp",.
~loglog=True)
ax = data.loc[["CHE"]] .plot.scatter(y="refugees", x="gdp", ax=ax, color="r",
~label="Switzerland")
plt.title("refugees fraction vs. gdp")
plt.show()

11



[45] :

[45] :

[46] :

[47]:

[47] :

[48] :

refugees fraction vs. gdp

10°
* . s Switzerland
.
107! o .
.
S o .
107 ; T CRUTR e e
. o ey, & . ® o ls * o
L) . s 3 ~ s o
H 10-2 4 ""., ™ . -"... :" .
& " a8 9. . . . .
2 oot -* St .
u 1D—-1- o * . * I. L L }". :
Y !I et - o ‘
™ L ] L ™ L ] -
107 3 S n -
- .:' . " Vg s
.
1079 4 ] . & -
I I I
10° 10¢ 10°
gdp

again we can print the info for one country

data.loc["CHE"]

gdp 82933.055377
refugees 0.008484
Name: CHE, dtype: float64

2.5.1 Highlighting a Full Region
Based on th meta data provided by the World Bank, we can highlight a region

europe = meta.loc[meta.Region == "Europe & Central Asia"].index
europe [:10]

Index(['ALB', 'AND', 'ARM', 'AUT', 'AZE', 'BEL', 'BGR', 'BIH', 'BLR', 'CHE'],
dtype='object', name='Country Code')

ax = datal[data["refugees"] > 1le-10].plot.scatter(y="refugees", x="gdp",.
sloglog=True)

ax = data.loc[data.index.intersection(europe)].plot.scatter(y="refugees",,
~x="gdp", ax=ax, color="r", label="Europe & Central Asia")

plt.title("refugees fraction vs. gdp")

12



[49] :

[50]:

plt.show()

refugees fraction vs. gdp

107
* . s Europe & Central Asia
L ]
107! .
L ]
S = . . ™
1077 3 . L] = Ll ’ 'h . " ot
I‘ .-. - L] ” bl L] L] ™
{107 4 B o0 ot bed, R .
& L . . . "
IE L ] .‘ e & - - L
E 1D—-1- i * . * l' L L ] ;". * : *
. 8 2 ST w o .
., Fowa™, . .
10-% 3 . ® e -
. ., * Ta s
a® » .
1079 3 ] . ™ .
I I I
10° 10¢ 10°
gdp

(As we lost some countries with missing data when we called dropna above, we need the
data.index.intersection-call to select only country codes really contained in our data.)

2.6 Fitting

We now look at a tiny subset of this data and look at ways to fit a function to it.

Scipy preparse a huge number of options, we will look at three options of increasing complexity
and flexibility.

2.6.1 Preparations

first we select our subset

europe_small = ['AUT',
'DEU',
'FRA',
'ITA',

]

data_eu = data.loc[europe_small] .dropna()

13



[61]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
plt.title("refugees fraction vs. gdp")
plt.show()

refugees fraction vs. gdp

0.009 A

0008 -

0.007 A “

0.006 -

0.005 1

refugees

0.004 A .

0.003 +

pooz{ ,

I I I I I I I I
34000 36000 38000 40000 42000 44000 46000 43000
gdp

and we create a vector with all the x values we will need to plot our fit result

[52]: x = np.linspace(data_eu["gdp"] .min(), data_eu["gdp"] .max(), 100)

2.6.2 polyfit
Polyfit is probably the easiest way to fit a polynome to given data.

[63]: from numpy import polyfit, polyval

[64]: res = polyfit(data_eu["gdp"], data_eu["refugees"],1)
print(res)

[ 5.20472464e-07 -1.64261467e-02]

[65]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, polyval(res, x))
plt.title("refugees fraction vs. gdp")
plt.show()

14



refugees fraction vs. gdp

0.009 1
0.008 A
0.007 A .
0.006

0.005 A

refugees

0.004 A .
0.003 ~

pooz{ ,

I I I I I I I I
34000 36000 38000 40000 42000 44000 46000 43000
gdp

2.6.3 curve_ fit
With curve_fit you can define a complex fit function.
[66]: from scipy.optimize import curve_fit

[67]: def fit_function(x,b,c):
return b*x+c

[68]: res = curve_fit(fit_function, data_eul"gdp"], data_eu["refugees"])
print(res)

(array ([ 5.20472463e-07, -1.64261467e-02]), array([[ 3.86848840e-15,
-1.62289029e-10],
[-1.62289029e-10, 6.90771771e-06]11))

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, *(res[0])))
plt.title("refugees fraction vs. gdp")
plt.show()

15



refugees fraction vs. gdp

0.009 1

0.008 A

0.007 A .

0.006

0.005 A

refugees

0.004 A .

0.003 ~

pooz{ ,

I I I I I I I I
34000 36000 38000 40000 42000 44000 46000 43000
gdp

2.6.4 leastsq

Finally, least-squares allows you to even specify the cost function. With this you can factor in
uncertainties or weights for your data points.

[60]: from scipy.optimize import leastsq

[61]: def fit_function(x, p):
return x*p[0]+p[1]

[62]: def error_function(params):
return data_eu["refugees"] - fit_function(data_eul["gdp"], params)

[63]: res = leastsq(error_function, [0,0])
print(res)

(array ([ 5.20472464e-07, -1.64261467e-02]), 3)

[64]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, fit_function(x, res[0]))
plt.title("refugees fraction vs. gdp")
plt.show()

16



refugees fraction vs. gdp

0.009 1

0.008 A

0.007 A

0.006

0.005 A

refugees

0.004 A

0.003 ~

pooz{ ,

34000 36000 33000 40000 42000

2.6.5 statsmodels

gdp

[65]: import statsmodels.formula.api as smf

[66]: res = smf.ols("refugees ~ gdp", data=data_eu).fit()

[67]: print(res.summary())

OLS Regression Results

44000 46000 48000

Dep. Variable: refugees  R-squared: 0.972
Model: OLS Adj. R-squared: 0.958
Method: Least Squares  F-statistic: 70.03
Date: 12 Jul 2022 Prob (F-statistic): 0.0140
Time: 07:41:24  Log-Likelihood: 25.185
No. Observations: 4  AIC: -46.37
Df Residuals: 2 BIC: -47.60
Df Model: 1
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -0.0164 0.003 -6.250 0.025 -0.028 -0.005
gdp 5.205e-07 6.22e-08 8.368 0.014 2.53e-07 7.88e-07



Omnibus: nan Durbin-Watson: 3.279

Prob(Omnibus) : nan Jarque-Bera (JB): 0.402
Skew: -0.551  Prob(JB): 0.818
Kurtosis: 1.905 Cond. No. 3.52e+05
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

[2] The condition number is large, 3.52e+05. This might indicate that there are
strong multicollinearity or other numerical problems.

/usr/1ib/python3/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning:
omni_normtest is not valid with less than 8 observations; 4 samples were given.
warn("omni_normtest is not valid with less than 8 observations; %i "

[68]: print(res.params)

Intercept -1.642615e-02
gdp 5.204725e-07
dtype: float64

[69]: ax = data_eu.plot.scatter(y="refugees", x="gdp", color="r")
ax.plot(x, res.params[1]*x+res.params([0])
plt.title("refugees fraction vs. gdp")
plt.show()

refugees fraction vs. gdp

0.009 A

0.008 -

0.007 A .

0,006 -

0.005 A

refugees

0.004 A .

0.003 1

nooz{ ,

34000 36000 35000 40000 42000 44000 49000 43000
gdp

18



[70]:

[70]:

[71]:

[71]:

[72]:

[72]:

[73]:

[73]:

[74] :

[74] :

2.7 Appendix: Selecting from DataFrames

2.7.1 Accessing Rows
Passing a single value to loc returns a Series

frame.loc["a"]

primes 11
fibo 1
0-4 0

Name: a, dtype: int64

Passing a list to loc returns a DataFrame (even if the list contains a single a single value)

frame.loc[["a"]]

primes fibo 0-4
a 11 1 0

frame.loc[["a","c"]]
primes fibo 0-4

11 1 0
c 17 2 2

Also slicing works (but includes the upper boundary)

frame.loc["b":"d"]

primes fibo 0-4

13 1 1
c 17 2 2
d 19 3 3

A list of boolean values with n-Rows entries, is considered a mask to select rows

frame.loc[[True,False,True,False, True]]

primes fibo 0-4

11 1 0
c 17 2 2
23 5 4

Instead of a list, a boolean-series can be used.

Rows are matched on the

(frame[["primes"]] > 20 would not work as this returns a frame instead of a series.)

19

index.



[75]: | frame.loc[frame["primes"] > 20]

[75]: primes fibo 0-4
e 23 5 4

When using a mask, .loc is optional (but recommended to avoid confusion with columns).

[76]: frame[frame["primes"] > 20]

[76]: primes fibo 0-4
e 23 5 4

Using iloc it is possible to access rows by position as well. (without using the index)

[77]: frame.iloc[2:-1]

[77]: primes fibo 0-4
c 17 2 2
d 19 3 3

2.7.2 Accessing Columns

The frame is subscripted directly. Again, passing a singel value returns a series.

[78]: frame["primes"]

[78]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64

While a list returns a DataFrame

[79]: frame[["primes"]]

[79]: primes
11
13
17
19
23

O Q& 0 T W

[80]: frame[["primes","0-4"]]

[80]1: primes 0-4
a 11 0

20



b 13 1
c 17 2
d 19 3
e 23 4

Instead of subscripting, the get-method can be used.

[81]: frame.get(["primes","0-4"])

[81]: primes O-
11
13
17
19
23

® & 0 TP
B W N R, oD

For single columns, an attribute with the same name exists

[82] :  frame.primes

[82]: a 11
b 13
c 17
d 19
e 23

Name: primes, dtype: int64

But this fails, if the column-name is not a valid attribute-name

[83]: | # Raises SyntazError
#frame.0-4

For even more options have a look at the pandas-website: https://pandas.pydata.org/pandas-
docs/stable/indexing.html

21



	Pandas
	Basic Data Structures
	Series
	DataFrame


	Refugee Example
	Loading and Accessing Data
	Working with a Single Country
	Removing Unwanted Data
	Excluding Non-Countries
	Excluding Columns

	Loading Additional Files
	Creating the Plot
	Highlighting a Full Region

	Fitting
	Preparations
	polyfit
	curve_fit
	leastsq
	statsmodels

	Appendix: Selecting from DataFrames
	Accessing Rows
	Accessing Columns



