Hardware-assisted speed-up techniques

Scientific Programming with Python

Roman Gredig

U™ University of
=) Zurich™




Overview

e Motivation

 The Data Access Issue
e Why modern CPUs are starving?
e Caches and the hierarchical memory model

e Techniques for fighting data starvations

* High Performance Libraries

Based on the lecture slides of
Francesc Alted

"Advanced Scientific Programming in Python"
This work is licensed under the

Creative Commons Attribution-ShareAlike 3.0 License.
2



Motivation



Computing a Polynomial

We want to compute the polynomial:
y = 0.25x3 + 0.75x2 — 1.5x — 2
in the range [-1,1], with granularity of 10 million points on the x-axis

... and we want to do that as FAST as possible ...



use NumPy

NumPy is a powerful package that let you perform calculations with Python,

but at C speed:
(see previous talks)

import numpy as np

N = 10*¥1000*1000
X = np.linspace(-1, 1, N)
y = .25*x**3 + _T75*x**2 - 1 5*x - 2

That takes around 0.86 sec on our machine (Intel Core i5-3380M CPU @ 2.90GHz).

Hint: use $timeit in ipython for easy benchmarking

How to make it faster?



"Quick & Dirty" Approach: Parallelize

* The problem of computing a polynomial is “embarrassingly” parallelizable:
just divide the domain to compute in N chunks and evaluate the expression
for each chunk.

* This can be easily implemented in Python by, for example, using the
multiprocessing module. See poly-mp . py script.

e Using 2 cores, the 0.86 sec is slowed down to 0.88 sec! WTF?

e Why do | even buy a multi-core computer?



Another (Much Easier) Approach:
Factorize

e The NumPy expression:
() y = .25%x**3 4+  75%x**2 - 1 5%x - 2

can be written as

() y = ((.25%x + .75)%x - 1.5)%x - 2

 With this, the time goes from 0.86 sec to 0.107 sec, which is much faster (8x)
than using two processors with the multiprocessing approach (0.88 sec).

Give optimization a chance before parallelizing!



Numexpr Can Compute Expressions
Way Faster

e Numexpr is a just-in-time (JIT) compiler, based on NumPy, that optimizes the
evaluation of complex expressions. Its use is easy:

import numpy as np

import numexpr as ne

N = 10*1000*1000

X = np.linspace(-1, 1, N)

ne.set num threads(l) # use only one thread/cpu

Yy ne.evaluate (' .25*x**3 + [ 75*x**2 - ] B*x - 2')

 That takes around 0.059 sec to complete, which is 15x faster than the
original NumPy expression (0.86 sec).



Fine-tune Expressions with Numexpr

* Numexpr is also sensible to computer-friendly expressions like:

() vy = ((.25*x + .75)*x - 1.5)*x - 2

* Numexpr takes 0.046 sec for the above (0.059 sec were needed for the
original expression, that’s a 28% faster)



Using Multiple Threads with Numexpr

* Numexpr supports multi processing:

import numpy as np

import numexpr as ne

N = 10*1000*1000

X = np.linspace(-1, 1, N)

ne.set num threads(2)

Y ne.evaluate (' ((.25*x + .75)*x - 1.5)*x - 2"')

 That takes around 0.029 sec to complete, which is a 60% faster than using a
single processor (0.046 sec).

10



Summary and Open Questions

2 cores Parallel Speedup

NumPy (])

NumPy (ll)

Numexpr (l)

Numexpr (ll)

e If all the approaches perform the same computations, all in C space, why the
wild differences in performance?

* Why the different approaches do not scale similarly in parallel mode?

() y = .25%x**3 + _75%x**2 - 1 5%x — 2

n vy ((.25*x + .75)*x - 1.5)*x - 2

11



A First Answer:
Power Expansion and Performance

Numexpr expands the expression:

0.25*%x**3 4+ (0.75*x**2 4+ 1 .5*x - 2
to
0.25*x*x*x + 0.75*x*x + 1.5*x - 2

SO, no need to use the expensive pow ()

12



One (Important) Remaining Question

Why can numexpr execute this expression:
((.25*x + .75)*x - 1.5)*x - 2

more than 2x faster than NumPy?

13



One (Important) Remaining Question

Why can numexpr execute this expression:
((.25*x + .75)*x - 1.5)*x - 2
more than 2x faster than NumPy?

By making a more efficient use of the memory resource

14



The Data Access
Issue



Quote Back in 1993

“We continue to benefit from tremendous increases in the raw speed of
microprocessors without proportional increases in the speed of memory.
This means that 'good’' performance is becoming more closely tied to good
memory access patterns, and careful re-use of operands.”

“No one could afford a memory system fast enough to satisfy every (memory)
reference immediately, so vendors depends on caches, interleaving, and other
devices to deliver reasonable memory performance.”

— Kevin Dowd, after his book “High Performance Computing”,
O’Reilly & Associates, Inc, 1993

16



Quote Back in 1996

“Across the industry, today’s chips are largely able to execute code faster than
we can feed them with instructions and data. There are no longer performance
bottlenecks in the floating-point multiplier or in having only a single integer unit.
The real design action is in memory subsystems, caches, buses, bandwidth, and
latency.”

“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors.”

— Richard Sites, after his article “lt’s The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

17



CPU vs. Memory Cycle Trend

simplified perfomance evolution

10°

memory

10° E
10% 5
103 E

102 E

relative performance

10% -

100 E

0 5 10 15 20 25 30 35 40
time [years]

CPU speed increases much faster than memory speed — performance gap

18



Book in 2009

1\@ MORGANNCLAYPOOL PUBLISHERS

The Memory System

You Can’t Avoid It
You Can’t Ignore If,
You Can’t Fake It

Bruce Jacob

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

19



The CPU Starvation Problem

* Memory latency is much slower (between 250x and 500x) than processors
and is an essential bottleneck.

* Memory throughput is improving at a better rate than memory latency, but it
is also much slower than processors (between 30x and 100x).

The result is that CPUs in our current computers are suffering from a serious
starvation data problem:

They could consume (much!) more data than the system can possibly
deliver.

20



What Is the Industry Doing to Alleviate
CPU Starvation?

* They are improving memory throughput: cheaper to implement (more data is
transmitted on each clock cycle).

* They are adding big caches in the CPU die (i.e. the “chip”).

e Different types of memory:

e regular memory: dynamic RAM (DRAM)
* cheap

* dense
* needs periodic refresh

 cache memory: static RAM (SRAM)
* more complex
* no refresh needed

* increased power consumption at faster access

21



What Is the Industry Doing to Alleviate
CPU Starvation?

* They are improving memory throughput: cheaper to implement (more data is
transmitted on each clock cycle).

* They are adding big caches in the CPU die (i.e. the “chip”).

e Different types of memory:

e regular memory: dynamic RAM (DRAM)
e cheap )

e dense

e needs periodic refresh [T

|

LI
 cache memory: static RAM (SRAM) [

L[]
* more complex |

* no refresh needed {‘

e increased power consumption tenl ||| AT

22



Why Is a Cache Useful?

e (Caches are closer to the processor (normally in the same die), so both the
latency and throughput are improved.

* However: the faster they run the smaller they must be.

* They are effective mainly in a couple of scenarios:
* Time locality: when the dataset is reused.

e Spatial locality: when the dataset is accessed sequentially.

23



Time Locality

Parts of the dataset are reused

Cache

Memory (C array)

24



Space Locality

Dataset is accessed sequentially

Good!

Bad

Memory (C array)

25

Line 1
Line 2



The Hierarchical Memory Model

* Introduced by industry to cope with CPU data starvation problems.

* [t consists in having several layers of memory with different capabilities:

* Lower levels (i.e. closer to the CPU) have higher speed, but reduced
capacity. Best suited for performing computations.

* Higher levels have reduced speed, but higher capacity. Best suited for
storage purposes.

20



The Primordial Hierarchical Memory
Model

Two level hierarchy:

Capacity
paads

27



The 2000’s Hierarchical Memory Model

Four level hierarchy:

A

Capacity
paads

Level 1 Cache y

28



The Current Hierarchical Memory Model

Six level (or more) hierarchy:

—

paads

Capacity

Level 2 Cache
Level 1 Cache

29



The Current Hierarchical Memory Model

Six level (or more) hierarchy:

I

Z Main Memory "
o go)
© ®
o ®
© o
O Level 3 Cache

Level 2 Cache

Level 1 Cache V

CPU

one example (layouts differ a lot):

processor 0

processor 1

core 0O corel

CPU [[L1 CPU [[.z

L2 cache L2 cache
L3 cache

core 2 core 3

CPU ||u CPU ||u

L2 cache L2 cache
L3 cache

main memory

30




Once Upon A Time ...

* |Inthe 1970s and 1980s many computational scientists had to learn assembly
language in order to squeeze all the performance out of their processors.

e "written in assembler" used to be an advertisement

* In the good old days, the processor was the key bottleneck.

31



Nowadays ...

 Every computer scientist must acquire a good knowledge of the hierarchical
memory model (and its implications) if they want their applications to run at a
decent speed (i.e. they do not want their CPUs to starve too much).

* Memory organization has become now the key factor for optimizing.

* You don't need to know how to put data in the cache,
but help the OS to do it efficiently.

32



The Blocking Technique

When you have to access memory, get a contiguous block that fits in the CPU
cache, operate upon it or reuse it as much as possible, then write the block back
to memory:

C =A<oper>B

|
Dataset A perate
Cache
@

CPU Dataset C

Dataset B

33



Understand NumPy Memory Layout

Being a a squared array (4000x4000) of doubles, we have:

Summing up column-wise:

a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

al[l,:].sum() # takes 72 us

NumPy arrays are ordered row-wise (C convention) by default

When would a1, :].sum() be slowerthana[:,1].sum()?

34



Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

def dot naive(a,b):
c = np.zeros((nrows, ncols), dtype='£8")
for row in range (nrows) :
for col in range(ncols):
for 1 in range (nrows):
c[row,col] += a[row,1] * b[i,col]
return c

Vectorized matrix-matrix multiplication: 20 s (64x faster)

def dot(a,b):
c = np.empty((nrows, ncols), dtype='£8"')
for row in range (nrows) :
for col in range(ncols):
c[row, col] = np.sum(a[row] * b[:,col])
return c

35



Interlude: Resolving More Open
Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

25MH3 + 752 - 154 — 2 (25" + .75)* - L.B)* — 2

NumPy vs Numexpr (1 thread)

36

B NumPy
B Numexpr



Interlude: Resolving More Open
Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

Il

25MH3 + 752 - 154 — 2 (25" + .75)* - L.B)* — 2

NumPy vs Numexpr (1 thread)

37

B NumPy
B Numexpr



Interlude: Resolving More Open
Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

25MH3 + 752 - 154 — 2 (25" + .75)* - L.B)* — 2

NumPy vs Numexpr (1 thread)

38

B NumPy
B Numexpr



Interlude: Resolving More Open
Questions

Time (s)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Time to evaluate polynomial (1 thread)

.
—

25MH3 + 752 - 154 — 2 (25" + .75)* - L.B)* — 2

NumPy vs Numexpr (1 thread)

39

B NumPy
B Numexpr



NumPy And Temporaries

Computing "a*b+c" with NumPy. Temporaries goes to memory.

—E—
cache

a*b+c

emory

a*b

40



Numexpr Avoids (Big) Temporaries

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

—

»] cache

——

a b C a*b+c

memory

a*b

41



Mysteries (almost) Solved Now

But why does is scale so differently ?

2 cores Parallel Speedup

NumPy (])

NumPy (ll)

Numexpr (I)

Numexpr (ll)

() y = .25%x**3 + _75%x**2 — 1 5%x — 2

(n vy ((.25*x + .75)*x - 1.5)*x - 2

42



Numba: Overcoming numexpr Limitations

* Numba is a JIT compiler that can translate a subset of the Python language
Into machine code

 For a single thread, it can achieve similar or better performance than
numexpr, but with more flexibility

* The costs of compilation can be somewhat high though

e [ree software

43



Numba Example: Computing the
Polynomial

from numba import jit
import numpy as np

N = 10*1000*1000

X = np.linspace(-1, 1, N)

y = np.empty (N, dtype=np.float64)
@jit

def poly(x, y):
for i in range(N):
v[i] = ((0.25*x[1i] + 0.75)*x[1] + 1.5)*x[1i] - 2

poly(x, y) # run through Numba!'
print (y)

44



Times for Computing the Polynomial

2 cores Parallel Speedup

NumPy (])

NumPy (ll)

Numexpr (I)

Numexpr (ll)

Numba ()

Numba (ll)

Compilation time for Numba: 0.321 sec

() y = .25%x**3 + _75%x**2 - 1 5%x - 2

M v = ((.25*x + .75)*x - 1.5)*x - 2

45



Steps To Accelerate Your Code

In order of importance:

 Make use of memory-efficient libraries (many of the current bottlenecks fall into this
category).

e Apply the blocking technique and vectorize your code.

e Parallelize using:
e Multi-threading (using Cython, numexpr, ...).
e Multi-processing (via the multiprocessing module in Python)

e EXxplicit message passing (IPython, MPI via mpi4py).

Parallelization is usually a pretty complex thing to program, so let’s use existing
libraries first!

46



Summary

* These days, you should understand the hierarchical memory model if you
want to get decent performance.

e Existing memory-efficient libraries help you to perform your computations
optimally.

* Do not blindly try to parallelize immediately. Do this as a last resort!

47



More Info

* Ulrich Drepper:
What Every Programmer Should Know About Memory
RedHat Inc.,2007

* Bruce Jacob:
The Memory System
Morgan & Claypool Publishers, 2009 (77 pages)

* Francesc Alted
Why Modern CPUs Are Starving and What Can Be Done about [t
Computing in Science and Engineering, March 2010

48


http://people.redhat.com/drepper/cpumemory.pdf
http://dx.doi.org/10.2200/S00201ED1V01Y200907CAC007
http://dx.doi.org/10.1109/MCSE.2010.51

Exercises

* Exercises 1 - 4: Experimenting

e Just play around with different equations and settings to understand your hardware. Try to
predict the outcome, before you measure the performance.

If possible, try to experiment with your own hardware and compare the results.
You only need numpy, numexpr, numba and the multiprocessing module.

* when you increase the data-set: keep our computer's memory-limit in mind!

Discuss the different results within the group.

* Exercises 5 - 6: Problem solving

* time consuming, especially #6 is probably more something for a rainy week-end

e do only what you think is fun, check otherwise the solutions.

49



Acknowledgment

Based on the slides of Francesc Alted

50


https://python.g-node.org/python-summerschool-2013/starving_cpu.html

Extra



Some High Performance Libraries

 BLAS: Routines that provide standard building blocks for performing basic vector and
matrix operations.

 ATLAS: Memory efficient algorithms as well as SIMD algorithms so as to provide an
efficient BLAS implementation.

* MKL: (Intel’s Math Kernel Library): Like ATLAS, but with support for multi-core and fine-
tuned for Intel architecture. Its VML subset computes basic math functions (sin, cos, exp,
log...) very efficiently.

* Numexpr: Performs relatively simple operations with NumPy arrays without the overhead
of temporaries. Can make use of multi-cores.

* Numba: Can compile potentially complex Python code involving NumPYy arrays.

* JAX: high-performance numerical computing (with NumPy arrays): differentiate, vectorize,
parallelize, also just in time compilation with GPU support.

52



