
Hardware Speedup, Scientific Programming with Python 2022 1

Department of Physics Scientific Programming with Python

Hardware Speedup July 14, 2022

Exercises

General comments

• Do not forget to activate the virtual environment:
source ~/school venv/bin/activate

• download the exercise source code from the exercise page.

• If you work on the virtual machine: depending on your hardware you can increase
the number of CPUs on your virtual machine. It might be interesting to run the
examples on the host-computer in case you have a running python environment
there.

• The first four exercises are more about playing with your hardware. The results
might differ on different computers. There are no solutions provided to these
exercises. Discuss the results together.

• Only in the last two exercises you have to implement new code. For these you find
an example solution. You might find even better solutions! If you don’t want to
solve them by yourself, just look at the solution and try to understand it.

• There are more exercises that you have time for. Do the exercises that interest
you.

1 Optimizing arithmetic expressions

• Use the script poly.py to check how much time it takes to evaluate this polynomial:
y = .25*x**3 + .75*x**2 - 1.5*x - 2

with x in the range [-1, 1], and with 10 millions points.

– you can execute the script with different arguments. For example:
./poly.py --library numpy --expression-index 0.

– Set the --library argument to numexpr and take note of the speed-up versus
the numpy case. Why do you think the speed-up is so large?

https://www.physik.uzh.ch/~python/python/lecture_hwaccel/

Hardware Speedup, Scientific Programming with Python 2022 2

If you get a “Permission denied” error you need to set execution permission to the
file with the following command: chmod +x poly.py

If your python command points to Python2, you need to change the first line (also
for the other scripts) to #!/usr/bin/env python3.

• The expression
y = ((.25*x + .75)*x - 1.5)*x - 2

represents the same polynomial as the original one, but with some interesting side-
effects in efficiency. Repeat this computation (--expression-index 1) for numpy
and numexpr and draw your own conclusions.

– Why do you think numpy is performing much more efficiently with this new
expression?

– Why is the speed-up in numexpr not so high in comparison?

– Why does numexpr continues to be faster than numpy?

• The C program poly.c does the same computation as above, but in pure C.
Compile it like this:
gcc -O3 -o poly poly.c -lm

and execute it with ./poly

– Why do you think it is more efficient than the above approaches?

2 Evaluating transcendental functions

• Evaluate the expression sin(x)**2+cos(x)**2 in poly.py, a function that in-
cludes transcendental functions (--expression-index 3).

– Why is the difference in time between numpy and numexpr so small?

• In poly.c, comment out expression 1) (around line 56) and uncomment expression
3) – the transcendental function). Don’t forget to compile again.

– Do these pure C approaches go faster than the Python-based ones?

– What would be needed to accelerate the computations?

3 Using Numba

The goal of Numba is to compile complex Python code on-the-fly and executing it for
you. It is fast, although one should take in account compiling times.

• Open poly-numba.py and look at how numba works.

– Run several expressions and determine which method is faster. What is the
compilation time for numba and how does it compare with the execution
time?

– Raise the amount of data points to 100 millions. What happens?

Hardware Speedup, Scientific Programming with Python 2022 3

4 Parallelism

• Be sure that you are on a multi-processor machine. Use the
y = ((.25*x + .75)*x - 1.5)*x - 2

expression in poly-mp.py by using the argument --expression-index 1. Repeat
the computation for both numpy and numexpr for a different number of processes
(numpy) or threads (numexpr). Pass the desired number with --threads to the
script.

– How does the efficiency scale?

– Why do you think it scales that way?

– How does the performance compare with the pure C computation?

• With the previous examples, compute the expression:
y = x

That is, do a simple copy of the ‘x’ vector. What is the performance?

– How does the performance evolve when using different threads? Why does it
scale very similarly than the polynomial evaluation?

– Could you have a guess at the memory bandwidth of this machine?

5 Calculating the Mandelbrot set

The Mandelbrot set M1 is a set of complex numbers c where the sequence zn+1 = x2n+ c
with z0 = 0 does not diverge. In other words, the absolute value |zn| must remain at
or below 2 for c to be in the Mandelbrot set. As soon as the value exceeds 2, it is clear
that the sequence will escape to infinity. The elements that diverge are often visualized
in the complex plane by assigning a color given by the number of iterations n that are
made until |zn| is for the first time bigger than 2.

In mandelbrot.py you will find an inefficient example of how to calculate the Man-
delbrot set. You can already execute the script (./mandelbrot.py) to see what it does.
Try to find a more efficient way. There is already a placeholder in this script where you
can insert your code. A comparison of the result and the speed is done when you run
the script. The result of your implementation will be shown in the right figure. Do not
focus on multi-threading here. Try to improve the code.

Hints:

• What library helps you to avoid for-loops (vectorization)?

• No need to avoid all for-loops. Think about which loops are the critical ones.

• If the comparison fails but the image looks almost the same you might only be offset
by one iteration (depends on where you stop). In this case ignore the warning.

1https://en.wikipedia.org/wiki/Mandelbrot_set

https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set

Hardware Speedup, Scientific Programming with Python 2022 4

6 Dithering images

This is a tough one. Only do it if you have some time left and think it is fun to do! I
spent half a day on finding a solution.

In printing or old-school computers there is no grayscale available. There is only 1 bit
per pixel (i.e. black or white). Different shades of grey are simulated by using the
dithering approach, meaning that the density of black dots in the image approximates
the average gray-level in the original. You know this typically from news-papers. There
are different algorithms available. Each has pro and cons. In this exercise we look at an
algorithm where each pixel can be calculated independently. In ditherperfomance.py

you find an inefficient implementation of the “ordered dither” algorithm. It already
loads an example image. You can also load another image if you like. If you load a too
big image it will be downsampled in matplotlib to fit the whole image in the window.
That might lead to weird repetitive patterns. If you see this, try to zoom in or load a
smaller image.

Try to find a more efficient way to dither the image. Again we do not focus on
multi-threading here. Try to improve the code. There is already a placeholder where
you can insert your code.

Hints (in increasing level of helpfulness):

• Carefully read the Wikipedia article2 about ordered dithering to understand what
is going on in the example.

• We have two for-loops. Try to vectorize!

• Look at the modulo-operator when accessing the threshold matrix. The same
elements are accessed again and again, depending on the image pixel position.
Maybe you could blow up the threshold matrix in a way that the element indices
of the image and the thresholdmatrix fit together? That might help to get rid of
the for-loops.

• Think in numpy! E.g. being a = np.array([[1,2], [3,4]])

and b = np.array([[1,2], [1,2]])

and c = np.array([[0,0],[0,0]]),
you can change certain elemtens in c with c[a>b] = 1.

2https://en.wikipedia.org/wiki/Ordered_dithering

https://en.wikipedia.org/wiki/Ordered_dithering
https://en.wikipedia.org/wiki/Ordered_dithering

	Optimizing arithmetic expressions
	Evaluating transcendental functions
	Using Numba
	Parallelism
	Calculating the Mandelbrot set
	Dithering images

