
Department of Physics

Need for Speed –
Python meets C/C++
Scientific Programming with Python

Nicola Chiapolini (Speaker) & Christian Elsasser (Author)

Partially based on a talk by Stéfan van der Walt This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

July 14, 2022 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

Python is nice, but by construction slow . . .

[xkcd]

July 14, 2022 Python meets C/C++ Page 2

http://xkcd.com/353

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

July 14, 2022 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

July 14, 2022 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

July 14, 2022 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

July 14, 2022 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

0. Introduction

Agenda

July 14, 2022 Python meets C/C++ Page 3

Department of Physics

C++ on one Slide www.cplusplus.com and www.learncpp.com

▶ C++ is an (if not the) object-oriented programming language (like Python)
▶ including inheritance (like Python does in a slightly different way)
▶ . . . operator overloading (like Python)
▶ It has a rich variety of libraries (like Python)
▶ It can raise exceptions (like Python)
▶ It requires declaration of variables (not like Python)
▶ It is (usually) a compiled language! (not like Python)

⇒ C++ and Python share a lot of similarities!

C is just the non-object-oriented version of C++ (minus some other missing features, e.g.
exceptions)

July 14, 2022 Python meets C/C++ Page 4

http://www.cplusplus.com
http://www.learncpp.com

Department of Physics

A Few Words of Warning

Bad code stays bad code! – Better clean
it up than trying to overpaint it!

Do not expect miracles! – You have to
master two languages!

July 14, 2022 Python meets C/C++ Page 5

Department of Physics

C keeps Python running . . .

▶ CPython is the standard implementation of the Python interpreter written in C.
▶ The Python C API (application programming interface) allows to build C libraries that can be

imported into Python (https://docs.python.org/3/c-api/) . . .
▶ . . . and looks like this:

Pure Python

>>>>>> a = [1,2,3,4,5,6,7,8]

>>>>>> sum(a)

36

July 14, 2022 Python meets C/C++ Page 6

https://docs.python.org/3/c-api/

Department of Physics

. . . but takes a lot of the fun out of Python
C++ implementation

sum_list(PyObject *list) {

int i, n;

long total = 0;

PyObject *item;

n = PyList_Size(list);

if (n < 0)

return -1; /* Not a list */

for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */

if (!PyInt_Check(item)) continue; /* Skip non-integers */

total += PyInt_AsLong(item);

}

return total;

}

July 14, 2022 Python meets C/C++ Page 7

Department of Physics

C/C++ in Python: Not a New Thing

NumPy's C API

ndarray typedef struct PyArrayObject {

PyObject_HEAD;

char *data;

int nd;

npy_intp *dimensions;

npy_intp *strides;

PyObject *base;

PyArray_Descr *descr;

int flags;

PyObject *weakreflist;

} PyArrayObject;

⇒ Several Python “standard” libraries are using C/C++ to speed things up

July 14, 2022 Python meets C/C++ Page 8

Department of Physics

Cython – An easy way to get C-enhanced compiled Python code
(http://cython.org)

▶ Hybrid programming language combining Python and an interface for using C/C++ routines.
▶ . . . or a static compiler for Python allowing to write C/C++ extensions for Python and heavily

optimising this code.
▶ It is a successor of the Pyrex language.

⇒ Every valid Python statement is also valid when using cython.

⇒ Code needs to be compiled → Time!
▶ Translates you “C-enhanced” Python code into C/C++ code using the C API

Cython (v0.29.23 and 3.0) understands Python 3, and also most of the features of C++11

July 14, 2022 Python meets C/C++ Page 9

http://cython.org

Department of Physics

Requirements: Cython package and a C compiler

▶ cython

The latest version can be downloaded from http://cython.org.
▶ C/C++ compiler, e.g. gcc/g++/clang (or for Windows: mingw)

Linux: usually already installed
(Ubuntu/Debian: sudo apt-get install build-essential)

MacOS X: XCode command line tools

Windows: Download of MinGW from http:// mingw.org and install it

July 14, 2022 Python meets C/C++ Page 10

http://cython.org
http:// mingw.org

Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Python

def fib(n):

a,b = 1,1

for i in range(n):

a,b = a+b,a

return a

July 14, 2022 Python meets C/C++ Page 11

Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):

cdef int i,a,b

a,b= 1,1

for i in range(n):

a,b = a+b,a

return a

▶ Type declaration (cdef) ⇒ Python/Cython knows what to expect

July 14, 2022 Python meets C/C++ Page 11

Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):

cdef int i,a,b

a,b= 1,1

for i in range(n):

a,b = a+b,a

return a

▶ Type declaration (cdef) ⇒ Python/Cython knows what to expect

▶ A few (simple) modifications can easily change the CPU time by a factor of O(100)

July 14, 2022 Python meets C/C++ Page 11

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall

-I<path_to_python_include>

-L<path_to_python_library>
<name>.c -o <name>.so

▶ If using C++ code, cython needs the option -+
and gcc → g++

▶ options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

July 14, 2022 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall

-I<path_to_python_include>

-L<path_to_python_library>
<name>.c -o <name>.so

▶ If using C++ code, cython needs the option -+
and gcc → g++

▶ options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

July 14, 2022 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall

-I<path_to_python_include>

-L<path_to_python_library>
<name>.c -o <name>.so

▶ If using C++ code, cython needs the option -+
and gcc → g++

▶ options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

July 14, 2022 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall

-I<path_to_python_include>

-L<path_to_python_library>
<name>.c -o <name>.so

▶ If using C++ code, cython needs the option -+
and gcc → g++

▶ options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

July 14, 2022 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .so

lib

cython ‘gcc‘

Shared object (<name>.so) can be imported
into Python with import <name>

1. Compile Cython code to C/C++ code
cython3 -3 <name>.pyx

2. Compile shared object file (i.e. library)
gcc [options] -fPIC -O2 -Wall

-I<path_to_python_include>

-L<path_to_python_library>
<name>.c -o <name>.so

▶ If using C++ code, cython needs the option -+
and gcc → g++

▶ options are for MacOS X -bundle -undefined
dynamic_lookup and for Debian -shared

School-Laptops:
gcc -shared -fPIC -O2 -Wall
-I/usr/include/python3.9/
<name>.c -o <name>.so

July 14, 2022 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The easy way)
Support via setuptools for building and installing Python modules ⇒ applicable for cython

Cython setup script

from setuptools import setup

from Cython.Build import cythonize

setup(ext_modules = cythonize([<name of .pxy files>],

language = "c++" #optional

))

Execute: python setup.py build_ext --inplace

Creates a .c/.cpp file for each .pyx file, then compiles it to an executable (in build

sub-directory) and compiles a .so file (or a .pxd if you are using Windows)

Further options for cythonize via help explorable

July 14, 2022 Python meets C/C++ Page 13

Department of Physics

When to use which way
1. Cython extension in ipython/
Jupyter notebook

▶ Investigate room for improvements with
cython

▶ Testing of different implementations
▶ Rather small code snippets
▶ No complicated dependencies

on external C/C++ libraries

Modules are not available outside (in princi-
ple)

2. Compiling via setup script (or by hand)

▶ Creating more complex modules
▶ (extensive) linking to external C/C++

libraries
▶ Configuring additional options

(e.g. for optimisation)

July 14, 2022 Python meets C/C++ Page 14

Department of Physics

How Performant is My Code?

cython -3 -a/--annotate <name>.pyx → additional HTML file

▶ bad performance → yellow marking
▶ allows to investigate code and learn about performance tuning

▶ Not every yellow part can be improved!
July 14, 2022 Python meets C/C++ Page 15

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 1

from math import sin,exp

def f(double x):

return sin(x)*exp(-x)

def integrate(double a,double b,int N):

cdef double dx,s

cdef int i

dx = (b-a)/N

s = 0.0

for i in range(N):

s += f(a+(i+0.5)*dx)

return s*dx

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Python layer (expensive)

integrate(a,b,N)

.

.

f(x)

.

.

C layer (cheap)

.

_pyx_integrate(a,b,N)

for (i=0; i<N; i++)

.

_pyx_f(x)

sum updated

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 2

from math import sin,exp

cdef double f(double x):

return sin(x)*exp(-x)

def integrate(double a,double b,int N):

cdef double dx,s

cdef int i

dx = (b-a)/N

s = 0.0

for i in range(N):

s += f(a+(i+0.5)*dx)

return s*dx

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 3

from math import sin,exp

cpdef double f(double x):

return sin(x)*exp(-x)

def integrate(double a,double b,int N):

cdef double dx,s

cdef int i

dx = (b-a)/N

s = 0.0

for i in range(N):

s += f(a+(i+0.5)*dx)

return s*dx

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

Integration - version 4

from libc.math cimport sin,exp

cpdef double f(double x):

return sin(x)*exp(-x)

def integrate(double a,double b,int N):

cdef double dx,s

cdef int i

dx = (b-a)/N

s = 0.0

for i in range(N):

s += f(a+(i+0.5)*dx)

return s*dx

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration∫ π

0
f (x) = sin x · e−x Exact result:

e−π + 1
2

= 0.521607

▶ Return values of function can be specified via the key word cdef

▶ cpdef ⇒ function also transparent to Python itself (no performance penalty)

▶ C/C++ library can be imported via from libc/libcpp.<module> cimport <name> (see
later)

▶ Using C++ functions can lead to a huge speed-up
▶ Try to do as much as you can in the C-layer

▶ Already huge speed-up when leveraging numpy and its vectorisation

July 14, 2022 Python meets C/C++ Page 16

Department of Physics

You are here!

July 14, 2022 Python meets C/C++ Page 17

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

Object holders with specific memory access structure, e.g.
▶ std::vector allows to access any element
▶ std::list only allows to access elements via iteration
▶ std::map represents an associative container with a key and a mapped values

July 14, 2022 Python meets C/C++ Page 18

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

. . . and Cython knows how to treat them!

Python → C++ → Python
iterable → std::vector → list
iterable → std::list → list
iterable → std::set → set

iterable (len 2) → std::pair → tuple (len 2)
dict → std::map → dict

bytes → std::string → bytes

July 14, 2022 Python meets C/C++ Page 18

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

A few remarks!
▶ iterators (e.g. it) can be used ⇒ dereferencing with dereference(it) and

incrementing/decrementing with preincrement (i.e. ++it), postincrement (i.e. it++),
predecrement (i.e. --it) and postdecrement (i.e. it--) from cython.operator

▶ Be careful with performance! ⇒ performance lost due to shuffling of data
▶ More indepth information can be found directly in the corresponding sections of the cython

code https://github.com/cython/cython/tree/master/Cython/Includes/libcpp
▶ C++11 containters (like std::unordered_map) are partially implemented

July 14, 2022 Python meets C/C++ Page 18

https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

Department of Physics

Exceptions/Errors
In terms of exception and error handling three different cases need to be considered:

▶ Raising of a Python error in cython code ⇒ return values make it impossible to raise
properly Python errors (Warning message, but continuing)

▶ Handling of error codes from pure C functions
▶ Raising of a C++ exception in C++ code used in cython ⇒ C++ exception terminates – if

not caught – program

July 14, 2022 Python meets C/C++ Page 19

Department of Physics

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():

raise RuntimeError("A problem")

return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

July 14, 2022 Python meets C/C++ Page 20

Department of Physics

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():

raise RuntimeError("A problem")

return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

Python Error in Cython - treated

cpdef int raiseError() except *:

raise RuntimeError("A problem")

return 1

⇒ Propagates the RuntimeError

July 14, 2022 Python meets C/C++ Page 20

Department of Physics

Errors in C
C does not know exceptions like Python or C++. If errors should be caught, it is usually done via
dedicated return values of functions which cannot appear in a regular function call.

Use the except statement to tell cython about this value

Handling a C Error

cpdef int raiseException() except -1:

return -1

July 14, 2022 Python meets C/C++ Page 21

Department of Physics

Exceptions in C++

[xkcd]

In cython this is also true for C++ exceptions!

Cython is not able to deal with C++ exceptions in a try-and-except clause!

⇒ But capturing in cython and translating to Python exceptions/errors is possible!

July 14, 2022 Python meets C/C++ Page 22

Department of Physics

Exceptions in C++
. . . and how to tackle them!

▶ cdef <C++ function>() except +

⇒ translates a C++ exception into a Python
error according to the right-hand scheme

▶ cdef <C++ function>() except

+<Python Error> e.g. MemoryError ⇒
translates every thrown C++ exception into
a MemoryError

▶ cdef <C++ function>() except

+<function raising Python error> ⇒
runs the indicated function if the C++
function throws any exception. If <function
raising Python error> does not raise an
error, a RuntimeError will be raised.

C++ → Python
bad_alloc → MemoryError
bad_cast → TypeError

domain_error → ValueError
invalid_argument → ValueError
ios_base::failure → IOError

out_of_range → IndexError
overflow_error → OverflowError

range_error → ArithmeticError
underflow_error → ArithmeticError

(all others) → RuntimeError

July 14, 2022 Python meets C/C++ Page 22

Department of Physics

Classes
Classes are a common feature of Python and C++

There are two aspects when dealing with cython:
▶ Defining classes containing C++ code in cython
▶ C++ classes integrated into Python

July 14, 2022 Python meets C/C++ Page 23

Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Defining classes in Cython

cdef class Integrand:

cpdef double evaluate(self,double x) except *:

raise NotImplementedError()

cdef class SinExpFunction(Integrand):

cpdef double evaluate(self,double x):

return sin(x)*exp(-x)

def integrate(Integrand f,double a,double b,int N):

...

s += f.evaluate(a+(i+0.5)*dx)

July 14, 2022 Python meets C/C++ Page 24

Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Adding classes in Python

class Poly(Integrand):

def evaluate(self,double x):

return x*x-3*x

integrate(Poly(),0.0,2.0,1000)

⇒ Speed lost with respect to definition in cython, but still faster than a pure Python
implementation

July 14, 2022 Python meets C/C++ Page 24

Department of Physics

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Exposing C++ classes in Cython

distutils: language = c++

distutils: sources = Rectangle.cpp

cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:

Rectangle(int, int, int, int) except +

int x0, y0, x1, y1

int getLength()

int getHeight()

int getArea()

void move(int, int)

July 14, 2022 Python meets C/C++ Page 25

Department of Physics

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Wrapping the class for Python

cdef class PyRectangle:

cdef Rectangle *thisptr

def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)

def __dealloc__(self):

del self.thisptr

def getLength(self):

return self.thisptr.getLength()

def getHeight(self):

return self.thisptr.getHeight()

...

July 14, 2022 Python meets C/C++ Page 25

Department of Physics

Automatic Wrappers
. . . since not everybody likes to write lines of error-prone code

▶ SWIG
▶ boost::python
▶ ctypes
▶ . . .

Goal: creating compilable C/C++ code
based on the Python C API

July 14, 2022 Python meets C/C++ Page 26

Department of Physics

SWIG
SWIG: Simplified Wrapper and Interface Generator

▶ Generic Wrapper for C/C++ to script-like languages
▶ R
▶ Perl
▶ Ruby
▶ Tcl
▶ PHP5
▶ Java
▶ . . . and Python

▶ Pretty old – created in 1995 by Dave Beazley
▶ Current version is 4.0.2

July 14, 2022 Python meets C/C++ Page 27

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext

--inplace

July 14, 2022 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext

--inplace

July 14, 2022 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext

--inplace

July 14, 2022 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext

--inplace

July 14, 2022 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Compile shared object (i.e. library)

Step 2 best handed to setuptool
(setup.py)
python setup.py build_ext

--inplace

July 14, 2022 Python meets C/C++ Page 28

Department of Physics

SWIG – The interface file
Main configuration with interface (.i) files

▶ specify which (header) file(s) contain(s)
the C/C++ code to wrap

▶ define special data types
(e.g. std::vector<...>)

▶ handle additional configuration (e.g.
exception/error translation)

Interface file

%module geom // name of the module

...

// things swig should know about

%include "Shape.h"

%include "Rectangle.h"

// things that should be put into the

// header of the wrapper file (.c/.cxx)

%{

include "Shape.h"

include "Rectangle.h"

%}

July 14, 2022 Python meets C/C++ Page 29

Department of Physics

SWIG – The setup.py file

setuptools setup script (setup.py)

from setuptools import setup, Extension

extension_mod = Extension("_<name>" , # Use _ to distinguish to final module name

["<name_wrap>.cxx",

"<source1>.cpp",

"<source2>.cpp","..."],

language='c++')

setup(name = "_<name>", ext_modules=[extension_mod])

▶ To be build extension needs a different name than the module set up by SWIG
(default: _name

▶ Language option only needed for C++
▶ python setup.py build_ext --inplace

July 14, 2022 Python meets C/C++ Page 30

Department of Physics

A Few Remarks about SWIG

▶ SWIG ≈ performance loss with respect to cython
▶ If SWIG works: ,
▶ If it does not: /
▶ . . . and therefore you can lose a lot of time with special problems
▶ It is not always optimal to expose the whole class to Python

July 14, 2022 Python meets C/C++ Page 31

Department of Physics

Conclusion

▶ Interfacing Python with C/C++ is – or
better – can be a way to create powerful
code

▶ cython and SWIG are two nice tools to
do so

▶ . . . but always make the interfacing
maintainable/useful/etc. i.e. not a British
train door

▶ And it’s all about finding the sweet spot!

July 14, 2022 Python meets C/C++ Page 32

Department of Physics

The Sweet Spot!
Time spent

Code executed per compilation

Compilation

Pure code optimal Compiled code optimal

Python

Python + C/C++

July 14, 2022 Python meets C/C++ Page 33

Department of Physics

The End!

[xkcd]July 14, 2022 Python meets C/C++ Page 34

Department of Physics

References

1. Stéfan van der Walt, Speeding up scientific Python code using Cython, Advanced Scientific
Programming in Python, 2013 (Zurich) & 2014 (Split)

2. Stefan Behnel et al., Cython tutorial, Proceedings of the 8th Python in Science Conference (SciPy 2009)
⇒ based on older cython version, but the main reference of cython

3. Dave Beazley, Swig Master Class, PyCon’2008
4. http://docs.cython.org/src/tutorial/

5. http://www.swig.org

July 14, 2022 Python meets C/C++ Page 35

http://docs.cython.org/src/tutorial/
http://www.swig.org

Department of Physics

Backup

Department of Physics

Fortran meets Python
The f2py compiler (http://docs.scipy.org/doc/numpy-dev/f2py/) offers – in a similar way as
cython – the possibility to generate extension modules for Python from Fortran code.

f2py -c -m <module name> <fortran file>.f/.f90 -I<path to python header file>

builds from the code in <fortran file>.f/.f90 a importable module (i.e. shared object)
<module name>.so

Fortran modules and subroutines are exposed to Python on time of the import of the built module.

The compilation can also be split into a first step generating a signature file, which is in a second
step compiled into the extension module

July 14, 2022 Python meets C/C++ Page 37

http://docs.scipy.org/doc/numpy-dev/f2py/

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 1

cdef extern from 'except_cy.h'

cdef void raiseException() except +

def tryIt():

try:

raiseException()

except RuntimeError as e:

print(e)

⇒ OK as raiseException() throws a std::exception → RuntimeError

July 14, 2022 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 2

cdef extern from 'except_cy.h'

cdef void raiseException() except +MemoryError

def tryIt():

try:

raiseException()

except RuntimeError as e:

print(e)

⇒ Not OK as raiseException() throws a std::exception which is explicitly transformed into a
MemoryError

July 14, 2022 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 3

cdef extern from 'except_cy.h'

cdef void raiseException() except +MemoryError

def tryIt():

try:

raiseException()

except RuntimeError as e:

print(e)

⇒ Not OK as raiseBadAlloc() throws a std::bad_alloc which is transformed into a
MemoryError

July 14, 2022 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 4

cdef extern from 'except_cy.h'

cdef void raiseException() except +MemoryError

def tryIt():

try:

raiseException()

except RuntimeError as e:

print(e)

⇒ OK as raiseBadAlloc() throws a std::bad_alloc which is transformed into a MemoryError

July 14, 2022 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 5

cdef extern from 'except_cy.h'

cdef void raiseException() except +MemoryError

def tryIt():

try:

raiseException()

except RuntimeError as e:

print(e)

⇒ OK as raise_py_error() throws an error

July 14, 2022 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 6

cdef extern from 'except_cy.h'

cdef void raiseException() except +MemoryError

def tryIt():

try:

raiseException()

except RuntimeError as e:

print(e)

⇒ Not OK as no error is thrown by raise_py_error()

July 14, 2022 Python meets C/C++ Page 38

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.h � Class header file

namespace shapes {

class Rectangle {

public:

int x0, y0, x1, y1;

Rectangle(int x0, int y0, int x1, int y1);

~Rectangle(); // destructor

int getLength();

int getHeight();

int getArea();

void move(int dx, int dy);

};

}

July 14, 2022 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.cpp � Class implementation

include "Rectangle.h"

include <iostream>

using namespace shapes;

Rectangle::Rectangle(int X0, int Y0, int X1, int Y1) {

x0 = X0;

y0 = Y0;

x1 = X1;

y1 = Y1;

std::cout << "Here I am" << std::endl;}

Rectangle::~Rectangle() {

std::cout << "Byebye" << std::endl;}

...

July 14, 2022 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
Now exposing it to cython

rect_wrap.pyx � exposing the class to Cython

cdef class PyRectangle:

cdef Rectangle *thisptr

def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)

def __dealloc__(self):

del self.thisptr

def getLength(self):

return self.thisptr.getLength()

def getHeight(self):

return self.thisptr.getHeight()

...

July 14, 2022 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
. . . and using it!

Either in further cython code!

Using it in Cython code

def tryIt():

cdef Rectangle* r

try:

r = new Rectangle(1,2,3,4)

print("My length is {0:f}".format(r.getLength()))

print("My first x-coordinate is {0:f}".format(r.x0))

finally:

del r

July 14, 2022 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
. . . and using it!

Or for creating a Python (wrapper) class!

Wrapping the Class

distutils: language = c++

distutils: sources = Rectangle.cpp

cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:

Rectangle(int, int, int, int) except +

int x0, y0, x1, y1

int getLength()

int getHeight()

int getArea()

void move(int, int)

July 14, 2022 Python meets C/C++ Page 39

Department of Physics

Special features: STL Stuff with SWIG

▶ Dedicated interface files need to be integrated when running SWIG
▶ . . . and templates for each containers + each content need to be defined

Interface file with advanced type def

...

%include "std_vector.i"

%include "std_string.i"

...

%template(dVector) std::vector<double>;

%template(rectVector) std::vector<Rectangle*>;

...

July 14, 2022 Python meets C/C++ Page 40

Department of Physics

Special features: Exceptions with SWIG

Interface file with exception definition

...

%include "exception.i"

...

%exceptionclass ShapeError;

%exception *::whine {

try {

$action

} catch(ShapeError & e) {

ShapeError *ecopy = new ShapeError(e);

PyObject *err = SWIG_NewPointerObj(ecopy, SWIGTYPE_p_ShapeError, 1);

PyErr_SetObject(SWIG_Python_ExceptionType(SWIGTYPE_p_ShapeError), err);

SWIG_fail;

}

}

July 14, 2022 Python meets C/C++ Page 41

Department of Physics

Special features: Overloading
Cython deals the usual way with overloaded methods in C++:

Overloading in the interface � it works

cdef extern from "Rectangle.h" namespace "shapes":

...

void move(int, int)

void move(int)

but it cannot happen in a Python wrapper class:
Overloading in the wrapper � it does not work

cdef class PyRectangle:

...

def move(self,dx,dy):

return self.thisptr.move(dx,dy)

def move(self,d):

return self.thisptr.move(d)

July 14, 2022 Python meets C/C++ Page 42

Department of Physics

Special features: Inheritance
As in Python C++ classes can inherit from parent classes including overriding of methods

C++ classes � inheritance

class Shape {

public:

...

void virtual printInfo(); // Prints "Shape"

};

class Rectangle : public Shape {

public:

...

void printInfo(); // Prints "Rectangle"

};

July 14, 2022 Python meets C/C++ Page 43

Department of Physics

Special features: Inheritance
Cython can also deal with this feature, but there are two points to keep in mind:
1. If parent class is also exposed to cython, no redefinition of overridden methods is required
(and also allow → mis-interpreted as overloading)

C++ classes � inheritance wrapper

cdef class PyObject:

cdef Object* thisptr

def __cinit__(self):

self.thisptr = new Object()

def __dealloc__(self):

del self.thisptr

def printInfo(self):

self.thisptr.printInfo()

cdef class PyRectangle(PyObject):

def __cinit__(self,int x0,int y0,int x1,int y1):

self.thisptr = new Rectangle(x0,y0,x1,y1)

July 14, 2022 Python meets C/C++ Page 43

Department of Physics

Special features: Inheritance
2. The inheritance can only be transported into wrapper classes if child classes have the same
set of methods as the mother class

C++ classes � inheritance exposed

cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Shape:

Shape() except +

void printInfo()

cdef cppclass Rectangle(Shape):

Rectangle(int, int, int, int) except +

...

void printInfo() # causes problems

...

July 14, 2022 Python meets C/C++ Page 43

Department of Physics

Special features: Operator Overloading
C++ as well as Python offers the potential to define operators for objects.

Example with Rectangles:

A · B

A

B

Multiplication of rectangles: Create the rectangle that is the bounding box of the two
July 14, 2022 Python meets C/C++ Page 44

Department of Physics

Special features: Operator Overloading

C++ code � operator overloading

Rectangle operator*(Rectangle& rhs){

double x0_n = min(min(x0,x1),min(rhs.x0,rhs.x1)),x1_n = max(max(x0,x1),max(rhs.x0,rhs.x1));

double y0_n = min(min(y0,y1),min(rhs.y0,rhs.y1)),y1_n = max(max(y0,y1),max(rhs.y0,rhs.y1));

return Rectangle(x0_n,y0_n,x1_n,y1_n);

};

Cython wrapper � operator overloading

to expose it to Cython

Rectangle operator*(Rectangle)

in the wrapper class

def __mul__(PyRectangle lhs,PyRectangle rhs):

res = PyRectangle(0,0,0,0)

res.thisptr[0] = lhs.thisptr[0]*rhs.thisptr[0] # ptr deref

return res

July 14, 2022 Python meets C/C++ Page 44

Department of Physics

Arrays
Arrays in cython are usually treated via typed memoryviews (e.g. double[:,:] means a
two-dimensional array of doubles, i.e. compatible with e.g. np.ones((3,4)))

Further you can specify which is the fastest changing index by :1, e.g.
▶ double[::1,:,:] is a F-contiguous three-dimensional array
▶ double[:,:,::1] is a C-contiguous three-dimensional array
▶ double[:,::1,:] is neither F- nor C-contiguous

For example a variable double[:,::1] a has as NumPy arrays variables like shape and size

and the elements can be accessed by a[i,j]

But be aware: NumPy is already heavily optimised, so do not to reinvent the wheel!

July 14, 2022 Python meets C/C++ Page 45

	Backup

