University of
Zurich™ P

&
Department of Physics Scientific Programming with Python
Analytics tools 13 July 2022
Exercises

Licence: CC-by-sa 4.0

Before you start:

— create a suitable directory for this exercise

— download the zipped material fromhttp://www.physik.uzh.ch/~python/python/lecture_analysis/
In case you are not familiar with the visualisation you can also postpone these parts to Friday after the
lecture on it.

Exercise 1: Warm-up with Minimisation

Target libraries: scipy.optimize

The goal of the exercise is to use the Rosenbrock function f(z,y) = (1 —)?+100(y —22)? to play around
and get familiar with the SciPy’s minimisation functionality.

You find the framework code in Analytics_ex 0l minimization_testing.ipynb.

The Rosenbroock function and its Jacobian (first derivative) and Hessian (second derivative) are avail-
able in scipy.optimize as rosen, rosen_der and rosen hess and it is a common function design to
benchmark minimisation algorithms.
You can investigate different questions:

— How do different algorithms perform in terms of run time?

— How does this depend on the initial guess?

— How do algorithms — where the first and second derivative are optional — perform with and without

this information?

You can also define another function and run some tests.

Exercise 2: Numerical Integration

Target libraries: scipy.integrate
This exercise should familiarise you with the integration functionality in Scipy.
You find the framework code in Analytics_ex_02 NumIntegration.ipynb.

Take the function f(z) = 1/((z —1)?+a) and perform the integration on [0, co] with different approaches
(Trapezoidal, Simpson’s, Brent). How does the precision and performance vary for different values of a
(go also to very small ones i.e. a = 1075 or a = 10712). How can the performance of the integration be
improved for these cases?

Take the function f(z) = 2% cos(2mz) and integrate on [0, 1] using the quad method. The QUAD family
offers also particular methods for calculating integrands that are weighted by trigonometric functions (see
documentation of quad). So run the integration with this particular implementation and compare the
performance in terms of speed and precision. What is the outcome if the integration range is [0,1000]?

Christian Elsasser 13 July 2022


http://www.physik.uzh.ch/~python/python/lecture_analysis/

Analytics tools, Scientific Programming with Python 2022 2

Exercise 3: Matrix Calculation

Targeted libraries: scipy.linalg

You can find in the file matrix.txt a 100 x 100 real-value positive definite symmetric matrix. You find
the framework code to read the matrix in Analytics_ex_03_Matrices.ipynb.

Read it in and use SciPy to calculate the determinant, the eigenvalues and -vectors. Since it is a positive
definite symmetric (.e. also Hermitian) matrix you can also try the dedicated functions for such matrices,
i.e. eigh and eigvalsh, in particular in terms of CPU timing. You can also test matrix addition and
multiplication using the matrix and its inverse and some other matrix operations you are interested in
as well as the Cholesky and QR and SVD (Singular value decomposition) decomposition. Use %timeit
to monitor the performance.

Exercise 4: Generation of Inverse Functions via Root-Finding

Targeted libraries: scipy.optimize

The goal of this exercise is to generate the inverse function of a bijective function f : R - R,z — y. You
find the framework code in Analytics_ex_04_InvFunc.ipynb.

For this we can use a root-finding algorithm to find z’ that solves f(x) =y for a given y. Use for example
the bijective function f(z) = 2® + x to test your approach. The ultimate goal is to generate a function
inverse(f) that takes a function as an argument and returns the (implicit) inverse function.

Exercise 5: How Cold is the Universe?

Targeted libraries: scipy.optimize

You can also try out some data analysis you have done with other tools (e.g. MATLAB, R) and try to fig-
ure out if it is possible in Python with the introduced libraries. If you have a lack of data, the file Cobe . txt
contains data from the COBE satellite (more info about COBE at http://lambda.gsfc.nasa.gov/
product/cobe/). It shows the spectrum of the cosmic microwave background. The first column gives the
frequency (actually the inverse of the wavelength in 1/cm), the second column the spectrum in MJy /sr
(MJy: Mega-Jansky, 1 Jy= 10726 W/Hz-m? ; sr: Steradian), so it is a measure of the spectral flux per
solid angle. The third column shows the uncertainty on the spectrum in kJy/sr.

This exercise should familiarise you with the minimisation functionality in Scipy and how to apply it to
parameter estimation. You find the framework code in Analytics_ex_05_UnivTemp.ipynb.

Use the scipy.optimize.least_squares, scipy.optimize.curve_fit or the fundamental minimisa-
tion method to perform a least-square fit of the data. The function that should describes the data is the
Planck law f(z) = Ag - #3/(exp(1.4392/T) — 1) where x is the frequency in 1/cm. A and T are the fit
parameters, where Ag is the amplitude and T' the temperature of the universe. The factor 1.439 K-cm
comes from h - ¢/kp (h: Planck’s constant, ¢: speed of light, kp: Boltzmann’s constant) in the chosen
unit frame. So you can determine from the fit how cold the universe is.

Exercise 6: Maximum-Likelihood Fitting

Targeted libraries: scipy and matplotlib

The goal of this exercise is to develop an algorithm to perform a maximum-likelihood estimation of data
with Python.

You find the framework code in Analytics_ex_06_MaxLLFinance.ipynb.

The file DJI_daily.csv contains the daily returns of the Dow Jones Index since the start of 2000 (Source:
Yahoo Finance).

Perform a maximum-likelihood fit to this data. It’s up to you to perform an normal or a binned maximum-
likelihood fit. You can start by using a Gaussian distribution (scipy.stats.gauss) and later use other

Christian Elsasser 13 July 2022


http://lambda.gsfc.nasa.gov/product/cobe/
http://lambda.gsfc.nasa.gov/product/cobe/

Analytics tools, Scientific Programming with Python 2022 3

suitable distributions like the Student-t distribution (scipy.stats.t).
Plot the distribution of data using histograms or errobars and the estimated distribution.

What happens when you restrict the data to a shorter period of time e.g. 200 days? The data is
chronologically ordered.

Tip: For numerical reasons using the negative log-likelihood function

log‘C = - Zlog(f(lﬂp))

and perform a minimisation with respect to the parameters p is a way to go. f is the distribution and z;
are the observations.

The ordering of parameters in the distributions from the scipy.stats package are not necessarily intu-
itive. So please consult the documentation.

Exercise 7: Sun Spots

Targeted libraries: scipy.fttpack

The file SN_m_tot.txt contains monthly averages of the number of sun spots. (The data goes back to 1749,
but let’s only consider data after 1900; Source: Royal Belgium Observatory). You find the framework
code in Analytics_ex_07_SunSpots.ipynb.

Load the file and analyse the correlation of the absolute and relative change in the number of sun spots
at month ¢ to month ¢ — k, i.e. the autocorrelation for lag k. Assess how the values are changing as a
function of k.

Use Fast-Fourier-Transforms to understand the frequency spectrum of the observations. What frequencies
can you spot in the data? To what period are they corresponding?

Mask the frequencies which have an amplitude below 5% of the maximum of the spectrum and use the
inverse FFT to create a model that describes the number of sun spots .

Exercise 8: Multidimensional Interpolation & Terrain Models

Targeted libraries: scipy.interpolate and matplotlib

In this exercise we want to apply an easy way offered by scipy to interpolate multidimensional data.
Have a look at the code in Analytics_solution_ex 08_ MultiDimInterpol.ipynb.

The file zrh_terrain.txt contain about 8’000 rows of sampled terrain data in the area of Zurich. The
rows are of the form latitude, longitude, and elevation (in metres).

Use the griddata function in the scipy.interpolate library to create a highly granular terrain model.
Tip: Study the doc string of the function in particular what the interpolation domain can be.

Visualise the resulting model. Try different plot types (heatmap, different 3D plots) offered by matplotlib
or other visualisation packages.

Test the different interpolation methods in griddata and see how the models differ due to the different
methods.

Optional: Create a very simple waterfall-type hydrology model to leverage the terrain model to simulate
flooding.

Exercise 9: Airline Connections

Targeted libraries: scipy.sparse and scipy.linalg

This exercise focusses on the application of sparse matrices in scipy. You can find the code framework in
Analytics_ex_09_AirlineNetwork.ipynb.

Christian Elsasser 13 July 2022



Analytics tools, Scientific Programming with Python 2022 4

The file routes.txt contains a list of almost all known commercial airline connections. It includes
information about the carrier, the departure location and the destination.
Use matrix calculus to find out the answers to the following questions:

— How many different routes exist from Zurich (IATA: ZRH) to Ushuaia (IATA: USH), not counting

code sharing, with less than four legs?

— Closing which airport will lead to the highest drop in number of possible connections?
Closing which airport will lead to the highest increase in the average number of legs in connecting
two airports?

— What is the answer for the above two questions in terms of the grounding of an airline?
Details on the airports, airlines and planes can be found in airports.txt, airlines.txt and planes. txt.

Exercise 10: Production Optimisation

Targeted libraries: scipy.optimize

This exercise focusses on the application of optimisation with constraints. You can find the code frame-
work in Analytics_ex_10_ProductionOptimisation.ipynb.

We are using a basic problem out of Microeconomics: There is a company that produces a good using
input factors capital K (machines, buildings, etc.) and labour L. The production function that describes
what quantity @ of the good can be produced

Q(L,K) = L*K"
with = 0.3 and 8 = 0.6.
There is also a budget constraint regarding the cost for the different input factor

C>wL+rK

where C' is the budgeted cost, w the wage as cost of a unit labour and r the rate as cost of a unit capital.

In the first step we assume fixed cost C' = 100 and factor prices w = 3 and r = 2. Let’s find the optimal
composition of capital and labour to maximize the output.

In the second step we relax the budget constraint. We assume the company due to the competition a
price taker and faces a price for the good p = 6. The cost for the input factors are covered via the sales
of the goods hence the constraint becomes

Q(L,K)p>wL+rK.

We want now to determine for a given wage level w what is the optimal choice of the company for
consumption of the input factors L and K to maximize the output Q.

Christian Elsasser 13 July 2022



