
Department of Physics

Data Visualization and more
Scientific Programming with Python
Jonas Eschle

Based partially on a talk by Stéfan van der Walt and modified by Andreas Weiden

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

July 2, 2021 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

The Ecosystem of Homo Python Scientificus

[Ondřej Čertík/LANL]

July 2, 2021 Data Visualization – Jonas Eschle Page 2

Department of Physics

Table of Contents

Visualization
Tools
Design
1D data
2D data
Intermezzo - Multiple graphs
2D data (continued)
3D data
4D data
ND data
Geospatial data
Networks

More tools

July 2, 2021 Data Visualization – Jonas Eschle Page 3

Department of Physics

Visualisation

July 2, 2021 Data Visualization – Jonas Eschle Page 4

Department of Physics

Visualization as well as Content Matters

July 2, 2021 Data Visualization – Jonas Eschle Page 5

Department of Physics

Visualization Options in Python
Matplotlib

I Started as emulation for MATLAB
I Basic plotting also in more than one

dimension

Seaborn
I Collection of more complex plots
I Based on Matplotlib

bokeh
I Web publishable graphics
I Large variety of usable interactions

Folium
I Python interface to leaflet (maps)
I Plotting of geo data

July 2, 2021 Data Visualization – Jonas Eschle Page 6

Department of Physics

Color
Color is a double-edged sword:

I Color can convey a lot of information
I But there are many forms of Color-blindness
I Many people will print your paper in black & white (for many reasons)

monolens is a package that allows you to see your plots simulated colorblind or in black and
white.
Two (non-exclusive) ways to deal with this:

I Use Colors that are differentiable for all people and also in black & and white

July 2, 2021 Data Visualization – Jonas Eschle Page 7

Department of Physics

Colorblindness
Colorblindness is not a total loss of color vision. Colorblind people can recognize a wide ranges
of colors. But certain ranges of colors are hard to distinguish.

July 2, 2021 Data Visualization – Jonas Eschle Page 8

Department of Physics

Colorblindness

6 42

8% of Caucasian, 5% of Asian, and (4%) of African males are so-called "red-green" Colorblind.
Chance to have at least one Colorblind reviewer out of three is up to 1 − (1 − 0.92)3 = 22%!

July 2, 2021 Data Visualization – Jonas Eschle Page 9

Department of Physics

Colorblindness
The way to deal with Colorblindess is to use redundant encoding of information
Most Colorblind people might not be able to distinguish certain colors, but are usually able to
distinguish different brightness

Use a color-palette taking advantage of this (either built-in or self-defined)
July 2, 2021 Data Visualization – Jonas Eschle Page 10

Department of Physics

Texture
Use redundant coding. Not only Color, but also texture/patterns:

I Different markers
I Different line-styles
I Different filling-styles

Make plots visible enough using thick enough lines:

July 2, 2021 Data Visualization – Jonas Eschle Page 11

Department of Physics

Custom styles
Matplotlib allows changing the style globally using an .mplstyle file or in the code with
mpl.rcParams[some_config] =
Some libraries offer pre-configured styles, e.g. mplhep mplhep.style.use(hep.style.ATLAS).
In this file you can define almost everything, from frame line width, fonts, background color and
grid, up to default figure size:

Default style ggplot

3 2 1 0 1 2 3
3

2

1

0

1

2

3

custom style for LHCb

1.0 1.5 2.0 2.5 3.0 3.5 4.0

2

4

6

8

10

12

14

16

An example file with all options can be found on the matplotlib page
https://matplotlib.org/tutorials/introductory/customizing.html
July 2, 2021 Data Visualization – Jonas Eschle Page 12

https://matplotlib.org/tutorials/introductory/customizing.html

Department of Physics

1D data
Histograms

import matplotlib.pyplot as plt
import numpy as np
x = np.random.randn(1000)
bins = np.linspace(-10, 10)
plt.hist(x, bins=bins)
plt.show()

I See the distribution of a variable
I Can pass number of bins, range of bins

or bin edges
I Set density=True for normalization

July 2, 2021 Data Visualization – Jonas Eschle Page 13

Department of Physics

Histograms from HEP
Prebinned histograms

import mplhep
h, bins = np.histogram(np.random.normal(10, 3, 400),

bins=10)
axs = plt.subplots(2, 2, sharex=True)[1].flatten()

mplhep.histplot(h, bins, yerr=True, ax=axs[0])
mplhep.histplot(h, bins, yerr=np.sqrt(h),

histtype=’errorbar’, ax=axs[1])
mplhep.histplot(h, bins, histtype=’fill’, ax=axs[2])
mplhep.histplot([1.5 * h, h], bins, histtype="fill",

stack=True, ax=axs[3])

I Prebinned histograms: mplhep
(matplotlib can’t do this out-of-the-box)

I Takes yerr, weights (and weights error)

July 2, 2021 Data Visualization – Jonas Eschle Page 14

Department of Physics

1D data
Kernel Density Estimation

import seaborn as sns
sns.distplot(x)

I Smooth estimation of a distribution
I Processes each datapoint as a gaussian

centered at the point with given width
(called bandwidth)

I Use sns.kdeplot for only the KDE
I kdeplot can take cumulative=True

July 2, 2021 Data Visualization – Jonas Eschle Page 15

Department of Physics

2D data
Line plots

x = np.array([1, 2, 3, 4])
y = x**2
plt.plot(x, y, linewidth=3)

import pandas as pd
df = pd.DataFrame({"x": x, "y":y})
df.plot("x", "y")

I Basic drawing command
I Can also be directly called from pandas

July 2, 2021 Data Visualization – Jonas Eschle Page 16

Department of Physics

2D data
Error bars

x = np.arange(0, 2*np.pi, 0.1)
yerr = 0.3
noise = yerr * np.random.randn(*x.shape)
y = np.sin(x) + noise
plt.errorbar(x, y, yerr=yerr, fmt="o")

I Uncertainties are very important in
science

I Can optionally take xerr and yerr
I yerr can be an array or a 2-tuple of

arrays for asymmetric uncertainties

July 2, 2021 Data Visualization – Jonas Eschle Page 17

Department of Physics

2D data
Filling areas

from numpy.random import randn

t = pd.date_range("2000-1-1", periods=150,
freq="B")

price = pd.Series(100+randn(150).cumsum(),
index=t)

avg = price.rolling(20).mean()
std = price.rolling(20).std()
plt.plot(price.index, price, "k")
plt.plot(avg.index, avg, "b")
plt.fill_between(std.index, avg-2*std,

avg+2*std, color="b",
alpha=0.2)

plt.ylabel("Price")

I Useful for errorbands

July 2, 2021 Data Visualization – Jonas Eschle Page 18

Department of Physics

Intermezzo - Multiple graphs
Subplot

np.random.seed(42)
x = np.arange(0, 10, 0.01)
y = np.random.randn(len(x)).cumsum()
d = np.diff(y)

plt.subplot(2, 2, 1)
plt.plot(x, y)
plt.subplot(224)
plt.hist(d, bins=20, density=True)

I Useful for independent plots
I Use sharex and sharey if neccessary

July 2, 2021 Data Visualization – Jonas Eschle Page 19

Department of Physics

Intermezzo - Multiple graphs
Subplots

fig, axes = plt.subplots(2, 2)
axes[0,0].plot(x, y)
axes[1,1].hist(d, bins=20, density=True)

I Useful for grid of plots
I Use sharex and sharey if neccessary
I Access the axes as a numpy array

July 2, 2021 Data Visualization – Jonas Eschle Page 20

Department of Physics

Intermezzo - Multiple graphs
Plot-in-plot

plt.plot(x, y)
args: [left, bottom, width, height]
plt.axes([0.2, .6, .2, .2])
plt.hist(d, bins=20, density=True)
plt.xticks([])
plt.yticks([])

I Ideal for summary plot or zoomed version
I Can turn off the axes
I Freely placeable

July 2, 2021 Data Visualization – Jonas Eschle Page 21

Department of Physics

Intermezzo - Multiple graphs
Twin axes

plt.figure()
x = np.linspace(-5, 5)
y = 2*x + 3
y2 = x**2

ax1 = plt.gca()
ax1.plot(x, y)
ax1.set_ylabel("Linear")
ax2 = ax1.twinx()
ax2.plot(x, y2)
ax2.set_ylabel("Quadratic")

I Two completely independent axes
I Use plt.twiny for an additional x-axis
I Have to build legend manually

July 2, 2021 Data Visualization – Jonas Eschle Page 22

Department of Physics

2D data
Scatter

from numpy.random import normal
from numpy.random import exponential

x = randn(1000)
y = exponential(1, 1000)
z = 15 - exponential(1, 1000)
plt.scatter(x, y, label="y")
plt.scatter(x, z, label="z")
plt.legend()
plt.savefig("figs/plt_scatter.png")

I Good at getting a feel for the data
I Bad for many datapoints

July 2, 2021 Data Visualization – Jonas Eschle Page 23

Department of Physics

2D data
2D histogram

x = randn(1000)
y = exponential(size=1000)
plt.hist2d(x, y)
plt.xlabel("x")
plt.ylabel("y")

I Can take arbitrary binning like in 1D
I Also works for lots of data

July 2, 2021 Data Visualization – Jonas Eschle Page 24

Department of Physics

2D data
2D hexagonal histogram

x, y = randn(2, 1000)
sns.jointplot(x, y, kind="hex", color="k")

I Sometimes nicer to look at than square
bins

I Has marginal distributions by default
I matplotlib also has a simpler version,

plt.hexbin

July 2, 2021 Data Visualization – Jonas Eschle Page 25

Department of Physics

2D data
Violin plots

mus = 0, 1.5, 2.2
data = [normal(mu, 1, 1000) for mu in mus]
plt.violinplot(data, positions=mus)
plt.xlabel(r"μ")

I More information than just plotting mean
vs µ

I Can add plotting of individual data points,
quantiles, etc

July 2, 2021 Data Visualization – Jonas Eschle Page 26

Department of Physics

(2+1)D data
Split violin plots

import seaborn as sns
tips = sns.load_dataset("tips")

tips["percent"] = tips.tip/tips.total_bill
sns.violinplot("day", "percent", "sex",

data=tips, split=True)

I Allows one more distinction via the two
halves or more by putting them next to
each other

I Good for additional category with few
states

July 2, 2021 Data Visualization – Jonas Eschle Page 27

Department of Physics

2D data
(Stacked) bar charts

bottom = 0
for sex, df in tips.groupby("sex"):

df = df.groupby("day").tip.mean()\
.reset_index()

plt.bar(df["day"], df["tip"], 0.8,
bottom, label=sex)

bottom = df["tip"]
plt.legend()

I Good for one or two categories also with
multiple states

I Shows the composition well, but not the
development of each component

July 2, 2021 Data Visualization – Jonas Eschle Page 28

Department of Physics

2D data
Images

path = "figs/python.png"
img = plt.imread(path)
fig1 = plt.imshow(img)

I scipy.ndimage.imread now deprecated
I Internally stored as a (2+1)D numpy array,

so you can use fancy indexing on/with it

July 2, 2021 Data Visualization – Jonas Eschle Page 29

Department of Physics

3D data
Contour plots

import noise
pnoise2 = np.vectorize(noise.pnoise2)
x = np.arange(-3, 3, 0.1)
y = np.arange(-3, 3, 0.1)
X, Y = np.meshgrid(x, y)
z = pnoise2(X, Y)
plt.contour(X, Y, z)

I Lines show fixed values, encoding in
color

I Suitable for printing (no fancy gradients)

July 2, 2021 Data Visualization – Jonas Eschle Page 30

Department of Physics

3D data
Filled contours

plt.contourf(X, Y, z, 20, cmap=’RdGy’)

I Contains more information than height
lines

I Can use any colormap

July 2, 2021 Data Visualization – Jonas Eschle Page 31

Department of Physics

3D data
Surface plots

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)

cmap = plt.cm.viridis
x, y, z = X.flatten(), Y.flatten(), z.flatten()
surf = ax.plot_trisurf(x, y, z, cmap=cmap)
plt.colorbar(surf)

I Easy to immediately grasp
I Can zoom/rotate in interactive

environments

July 2, 2021 Data Visualization – Jonas Eschle Page 32

Department of Physics

3D data
Ternary plots

import ternary
fig, tax = ternary.figure(scale=100)
fig.set_size_inches(5, 5)
a=100*rand(50);b=(100-a)*rand(50);c=100-a-b
tax.scatter(np.array([[a, b, c]]))
tax.scatter([[20, 35, 45]])
tax.right_corner_label("A")
tax.top_corner_label("B")
tax.left_corner_label("C")
tax.bottom_axis_label("a [%]")
...
tax.gridlines(multiple=20, color="gray")
tax.ticks(axis=’lbr’, multiple=20)
tax.boundary(linewidth=1)
tax.get_axes().axis(’off’)

I For analyzing composition with three
components that sum to a constant

I Need python-ternary for thisJuly 2, 2021 Data Visualization – Jonas Eschle Page 33

https://pypi.org/project/python-ternary/

Department of Physics

4D data
Enhanced scatter plot

planets = sns.load_dataset("planets")
cmap = sns.cubehelix_palette(rot=-.2,

as_cmap=True)
ax = sns.scatterplot(x="distance",

y="orbital_period",
hue="year",
size="mass",
palette=cmap,
sizes=(10, 200),
data=planets)

I Sometimes you can encode information
in color and size of markers

July 2, 2021 Data Visualization – Jonas Eschle Page 34

Department of Physics

ND data
Parallel coordinates

from pandas.plotting import parallel_coordinates

iris = pd.read_csv("data/iris.csv")
parallel_coordinates(data, "Name")

I Works for an arbitrary number of
dimensions

I Results may vary according to order of
dimensions

I Can only see broad features
I Best for distinguishing groups in multiple

dimensions

July 2, 2021 Data Visualization – Jonas Eschle Page 35

Department of Physics

ND data
Radar plot

I Can be used to compare few examples in
many dimensions

I No easy implementation available
I Find this example here

July 2, 2021 Data Visualization – Jonas Eschle Page 36

https://python-graph-gallery.com/392-use-faceting-for-radar-chart/

Department of Physics

ND data
Pairplot

sns.pairplot(iris, diag_kind="kde",
hue="Name")

I Plots each variables correlation with each
other variable

I Can be used to find correlations between
two variables out of many

I Easy to find a simple cut for classification
I Can even add automatic linear regression

July 2, 2021 Data Visualization – Jonas Eschle Page 37

Department of Physics

Geospatial data
Folium

import folium
m = folium.Map(location=[47.3686, 8.5391])

I Takes data from OpenStreetMap
I Interactive visualization via javascript in

the browser
I No easy way to save the resulting map

July 2, 2021 Data Visualization – Jonas Eschle Page 38

Department of Physics

Geospatial data
Geopandas

import geopandas
fig = plt.figure(figsize=(20, 5))
ax = fig.gca()
world = geopandas.read_file(

geopandas.datasets.get_path(
’naturalearth_lowres’))

world = world[(world.pop_est>0)
& (world.name!="Antarctica")]

world[’gdp_per_cap’] = world.gdp_md_est \
/ world.pop_est

world.plot(column=’gdp_per_cap’, ax=ax,
legend=True, cmap="OrRd")

I Has a low-res version of all countries
included

I Can read shapefiles in many common
formats

I Combines them with pandas dataframes

July 2, 2021 Data Visualization – Jonas Eschle Page 39

Department of Physics

Networks
Networkx

import networkx as nx
g = nx.cubical_graph()
nx.draw(g)

I Automatically positions the nodes
according to the weights on the nodes

I Many common graphs included
I Many customizations possible

July 2, 2021 Data Visualization – Jonas Eschle Page 40

Department of Physics

Networks
Networkx

I Automatically positions the nodes
according to the weights on the nodes

I Useful for text analysis

July 2, 2021 Data Visualization – Jonas Eschle Page 41

Department of Physics

Resources

I Pyplot tutorial: https://matplotlib.org/users/pyplot_tutorial.html
I Matplotlib documentation: https://matplotlib.org/api/pyplot_summary.html
I Custom style-sheets: https://matplotlib.org/users/customizing.html
I Pandas plotting documentation:

https://pandas.pydata.org/pandas-docs/stable/visualization.html
I Seaborn documentation: https://seaborn.pydata.org/

July 2, 2021 Data Visualization – Jonas Eschle Page 42

https://matplotlib.org/users/pyplot_tutorial.html
https://matplotlib.org/api/pyplot_summary.html
https://matplotlib.org/users/customizing.html
https://pandas.pydata.org/pandas-docs/stable/visualization.html
https://seaborn.pydata.org/

Department of Physics

More tools

July 2, 2021 Data Visualization – Jonas Eschle Page 43

Department of Physics

Argparse
Easy parsing of commandline options using argparse.

import argparse

parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("integers", metavar="N", type=int, nargs="+",

help="an integer for the accumulator")
parser.add_argument("--sum", dest="accumulate", action="store_const",

const=sum, default=max,
help="sum the integers (default: find the max)")

args = parser.parse_args()
print(args.accumulate(args.integers))

$ script.py --sum 1 2 3 4
10

July 2, 2021 Data Visualization – Jonas Eschle Page 44

https://docs.python.org/3/library/argparse.html

Department of Physics

Webscraping
Requests

requests perform web-requests, both GET and POST (and more) to interact with anything
reachable over the internet.
BeautifulSoup parses XML/HTML documents.

import requests
from bs4 import BeautifulSoup

Re-use the connection to the server
session = requests.Session()
Get the webpage
response = session.get(url)
Fail early if unexpected response
response.raise_for_status()
Read it into a datastructure that is easy to query
soup = BeautifulSoup(response.text, "lxml")
links = [a[’href’] for a in soup.select("a.internal")]

July 2, 2021 Data Visualization – Jonas Eschle Page 45

Department of Physics

Snakemake
Automate your analysis flow using snakemake.

rule targets:
input:

"plots/dataset1.pdf",
"plots/dataset2.pdf"

rule plot:
input:

"raw/{dataset}.csv"
output:

"plots/{dataset}.pdf"
shell:

"somecommand {input} {output}"

July 2, 2021 Data Visualization – Jonas Eschle Page 46

https://snakemake.readthedocs.io/en/stable/

Department of Physics

Subprocess
Sometimes you need to run external commands, for which no Python module exists. This can be
done with the subprocess module.
It has recently (Python 3.7) been simplified a lot:

import subprocess

result = subprocess.run(["du", "-h", "."], capture_output=True)
print(result.stdout)
print(result.stderr)
...

result2 = subprocess.run(["cat"], capture_output=True, input=b"test")
print(result2.stdout)
b’test’

July 2, 2021 Data Visualization – Jonas Eschle Page 47

Department of Physics

Frameworks

Some fields have even created their own toolkits:
I Computational biology: https://biopython.org/
I Astronomy: http://www.astropy.org/
I High-energy particle physics: https://github.com/scikit-hep

July 2, 2021 Data Visualization – Jonas Eschle Page 48

https://biopython.org/
http://www.astropy.org/
https://github.com/scikit-hep

	Visualization
	Tools
	Design
	1D data
	2D data
	Intermezzo - Multiple graphs
	2D data (continued)
	3D data
	4D data
	ND data
	Geospatial data
	Networks

	More tools

