
Department of Physics

Data Visualization and more
Scientific Programming with Python
Jonas Eschle

Based partially on a talk by Stéfan van der Walt and modified by Andreas Weiden

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

July 2, 2021 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


Department of Physics

The Ecosystem of Homo Python Scientificus
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Visualisation
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Visualization as well as Content Matters
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Visualization Options in Python
Matplotlib

I Started as emulation for MATLAB
I Basic plotting also in more than one

dimension

Seaborn
I Collection of more complex plots
I Based on Matplotlib

bokeh
I Web publishable graphics
I Large variety of usable interactions

Folium
I Python interface to leaflet (maps)
I Plotting of geo data
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Color
Color is a double-edged sword:

I Color can convey a lot of information
I But there are many forms of Color-blindness
I Many people will print your paper in black & white (for many reasons)

monolens is a package that allows you to see your plots simulated colorblind or in black and
white.
Two (non-exclusive) ways to deal with this:

I Use Colors that are differentiable for all people and also in black & and white
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Colorblindness
Colorblindness is not a total loss of color vision. Colorblind people can recognize a wide ranges
of colors. But certain ranges of colors are hard to distinguish.
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Colorblindness

6 42

8% of Caucasian, 5% of Asian, and (4%) of African males are so-called "red-green" Colorblind.
Chance to have at least one Colorblind reviewer out of three is up to 1 − (1 − 0.92)3 = 22%!
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Colorblindness
The way to deal with Colorblindess is to use redundant encoding of information
Most Colorblind people might not be able to distinguish certain colors, but are usually able to
distinguish different brightness

Use a color-palette taking advantage of this (either built-in or self-defined)
July 2, 2021 Data Visualization – Jonas Eschle Page 10



Department of Physics

Texture
Use redundant coding. Not only Color, but also texture/patterns:

I Different markers
I Different line-styles
I Different filling-styles

Make plots visible enough using thick enough lines:
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Custom styles
Matplotlib allows changing the style globally using an .mplstyle file or in the code with
mpl.rcParams[some_config] = ....
Some libraries offer pre-configured styles, e.g. mplhep mplhep.style.use(hep.style.ATLAS).
In this file you can define almost everything, from frame line width, fonts, background color and
grid, up to default figure size:

Default style ggplot

3 2 1 0 1 2 3
3

2

1
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3

custom style for LHCb

1.0 1.5 2.0 2.5 3.0 3.5 4.0

2

4

6

8

10

12

14

16

An example file with all options can be found on the matplotlib page
https://matplotlib.org/tutorials/introductory/customizing.html
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1D data
Histograms

import matplotlib.pyplot as plt
import numpy as np
x = np.random.randn(1000)
bins = np.linspace(-10, 10)
plt.hist(x, bins=bins)
plt.show()

I See the distribution of a variable
I Can pass number of bins, range of bins

or bin edges
I Set density=True for normalization
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Histograms from HEP
Prebinned histograms

import mplhep
h, bins = np.histogram(np.random.normal(10, 3, 400),

bins=10)
axs = plt.subplots(2, 2, sharex=True)[1].flatten()

mplhep.histplot(h, bins, yerr=True, ax=axs[0])
mplhep.histplot(h, bins, yerr=np.sqrt(h),

histtype=’errorbar’, ax=axs[1])
mplhep.histplot(h, bins, histtype=’fill’, ax=axs[2])
mplhep.histplot([1.5 * h, h], bins, histtype="fill",

stack=True, ax=axs[3])

I Prebinned histograms: mplhep
(matplotlib can’t do this out-of-the-box)

I Takes yerr, weights (and weights error)
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1D data
Kernel Density Estimation

import seaborn as sns
sns.distplot(x)

I Smooth estimation of a distribution
I Processes each datapoint as a gaussian

centered at the point with given width
(called bandwidth)

I Use sns.kdeplot for only the KDE
I kdeplot can take cumulative=True
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2D data
Line plots

x = np.array([1, 2, 3, 4])
y = x**2
plt.plot(x, y, linewidth=3)

import pandas as pd
df = pd.DataFrame({"x": x, "y":y})
df.plot("x", "y")

I Basic drawing command
I Can also be directly called from pandas
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2D data
Error bars

x = np.arange(0, 2*np.pi, 0.1)
yerr = 0.3
noise = yerr * np.random.randn(*x.shape)
y = np.sin(x) + noise
plt.errorbar(x, y, yerr=yerr, fmt="o")

I Uncertainties are very important in
science

I Can optionally take xerr and yerr
I yerr can be an array or a 2-tuple of

arrays for asymmetric uncertainties
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2D data
Filling areas

from numpy.random import randn

t = pd.date_range("2000-1-1", periods=150,
freq="B")

price = pd.Series(100+randn(150).cumsum(),
index=t)

avg = price.rolling(20).mean()
std = price.rolling(20).std()
plt.plot(price.index, price, "k")
plt.plot(avg.index, avg, "b")
plt.fill_between(std.index, avg-2*std,

avg+2*std, color="b",
alpha=0.2)

plt.ylabel("Price")

I Useful for errorbands
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Intermezzo - Multiple graphs
Subplot

np.random.seed(42)
x = np.arange(0, 10, 0.01)
y = np.random.randn(len(x)).cumsum()
d = np.diff(y)

plt.subplot(2, 2, 1)
plt.plot(x, y)
plt.subplot(224)
plt.hist(d, bins=20, density=True)

I Useful for independent plots
I Use sharex and sharey if neccessary
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Intermezzo - Multiple graphs
Subplots

fig, axes = plt.subplots(2, 2)
axes[0,0].plot(x, y)
axes[1,1].hist(d, bins=20, density=True)

I Useful for grid of plots
I Use sharex and sharey if neccessary
I Access the axes as a numpy array
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Intermezzo - Multiple graphs
Plot-in-plot

plt.plot(x, y)
# args: [left, bottom, width, height]
plt.axes([0.2, .6, .2, .2])
plt.hist(d, bins=20, density=True)
plt.xticks([])
plt.yticks([])

I Ideal for summary plot or zoomed version
I Can turn off the axes
I Freely placeable
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Intermezzo - Multiple graphs
Twin axes

plt.figure()
x = np.linspace(-5, 5)
y = 2*x + 3
y2 = x**2

ax1 = plt.gca()
ax1.plot(x, y)
ax1.set_ylabel("Linear")
ax2 = ax1.twinx()
ax2.plot(x, y2)
ax2.set_ylabel("Quadratic")

I Two completely independent axes
I Use plt.twiny for an additional x-axis
I Have to build legend manually
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2D data
Scatter

from numpy.random import normal
from numpy.random import exponential

x = randn(1000)
y = exponential(1, 1000)
z = 15 - exponential(1, 1000)
plt.scatter(x, y, label="y")
plt.scatter(x, z, label="z")
plt.legend()
plt.savefig("figs/plt_scatter.png")

I Good at getting a feel for the data
I Bad for many datapoints
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2D data
2D histogram

x = randn(1000)
y = exponential(size=1000)
plt.hist2d(x, y)
plt.xlabel("x")
plt.ylabel("y")

I Can take arbitrary binning like in 1D
I Also works for lots of data
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2D data
2D hexagonal histogram

x, y = randn(2, 1000)
sns.jointplot(x, y, kind="hex", color="k")

I Sometimes nicer to look at than square
bins

I Has marginal distributions by default
I matplotlib also has a simpler version,

plt.hexbin
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2D data
Violin plots

mus = 0, 1.5, 2.2
data = [normal(mu, 1, 1000) for mu in mus]
plt.violinplot(data, positions=mus)
plt.xlabel(r"$\mu$")

I More information than just plotting mean
vs µ

I Can add plotting of individual data points,
quantiles, etc
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(2+1)D data
Split violin plots

import seaborn as sns
tips = sns.load_dataset("tips")

tips["percent"] = tips.tip/tips.total_bill
sns.violinplot("day", "percent", "sex",

data=tips, split=True)

I Allows one more distinction via the two
halves or more by putting them next to
each other

I Good for additional category with few
states
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2D data
(Stacked) bar charts

bottom = 0
for sex, df in tips.groupby("sex"):

df = df.groupby("day").tip.mean()\
.reset_index()

plt.bar(df["day"], df["tip"], 0.8,
bottom, label=sex)

bottom = df["tip"]
plt.legend()

I Good for one or two categories also with
multiple states

I Shows the composition well, but not the
development of each component
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2D data
Images

path = "figs/python.png"
img = plt.imread(path)
fig1 = plt.imshow(img)

I scipy.ndimage.imread now deprecated
I Internally stored as a (2+1)D numpy array,

so you can use fancy indexing on/with it

July 2, 2021 Data Visualization – Jonas Eschle Page 29



Department of Physics

3D data
Contour plots

import noise
pnoise2 = np.vectorize(noise.pnoise2)
x = np.arange(-3, 3, 0.1)
y = np.arange(-3, 3, 0.1)
X, Y = np.meshgrid(x, y)
z = pnoise2(X, Y)
plt.contour(X, Y, z)

I Lines show fixed values, encoding in
color

I Suitable for printing (no fancy gradients)
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3D data
Filled contours

plt.contourf(X, Y, z, 20, cmap=’RdGy’)

I Contains more information than height
lines

I Can use any colormap
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3D data
Surface plots

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)

cmap = plt.cm.viridis
x, y, z = X.flatten(), Y.flatten(), z.flatten()
surf = ax.plot_trisurf(x, y, z, cmap=cmap)
plt.colorbar(surf)

I Easy to immediately grasp
I Can zoom/rotate in interactive

environments
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3D data
Ternary plots

import ternary
fig, tax = ternary.figure(scale=100)
fig.set_size_inches(5, 5)
a=100*rand(50);b=(100-a)*rand(50);c=100-a-b
tax.scatter(np.array([[a, b, c]]))
tax.scatter([[20, 35, 45]])
tax.right_corner_label("A")
tax.top_corner_label("B")
tax.left_corner_label("C")
tax.bottom_axis_label("a [%]")
...
tax.gridlines(multiple=20, color="gray")
tax.ticks(axis=’lbr’, multiple=20)
tax.boundary(linewidth=1)
tax.get_axes().axis(’off’)

I For analyzing composition with three
components that sum to a constant
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4D data
Enhanced scatter plot

planets = sns.load_dataset("planets")
cmap = sns.cubehelix_palette(rot=-.2,

as_cmap=True)
ax = sns.scatterplot(x="distance",

y="orbital_period",
hue="year",
size="mass",
palette=cmap,
sizes=(10, 200),
data=planets)

I Sometimes you can encode information
in color and size of markers
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ND data
Parallel coordinates

from pandas.plotting import parallel_coordinates

iris = pd.read_csv("data/iris.csv")
parallel_coordinates(data, "Name")

I Works for an arbitrary number of
dimensions

I Results may vary according to order of
dimensions

I Can only see broad features
I Best for distinguishing groups in multiple

dimensions
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ND data
Radar plot

I Can be used to compare few examples in
many dimensions

I No easy implementation available
I Find this example here
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ND data
Pairplot

sns.pairplot(iris, diag_kind="kde",
hue="Name")

I Plots each variables correlation with each
other variable

I Can be used to find correlations between
two variables out of many

I Easy to find a simple cut for classification
I Can even add automatic linear regression
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Geospatial data
Folium

import folium
m = folium.Map(location=[47.3686, 8.5391])

I Takes data from OpenStreetMap
I Interactive visualization via javascript in

the browser
I No easy way to save the resulting map
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Geospatial data
Geopandas

import geopandas
fig = plt.figure(figsize=(20, 5))
ax = fig.gca()
world = geopandas.read_file(

geopandas.datasets.get_path(
’naturalearth_lowres’))

world = world[(world.pop_est>0)
& (world.name!="Antarctica")]

world[’gdp_per_cap’] = world.gdp_md_est \
/ world.pop_est

world.plot(column=’gdp_per_cap’, ax=ax,
legend=True, cmap="OrRd")

I Has a low-res version of all countries
included

I Can read shapefiles in many common
formats

I Combines them with pandas dataframes

July 2, 2021 Data Visualization – Jonas Eschle Page 39



Department of Physics

Networks
Networkx

import networkx as nx
g = nx.cubical_graph()
nx.draw(g)

I Automatically positions the nodes
according to the weights on the nodes

I Many common graphs included
I Many customizations possible
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Networks
Networkx

I Automatically positions the nodes
according to the weights on the nodes

I Useful for text analysis
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Resources

I Pyplot tutorial: https://matplotlib.org/users/pyplot_tutorial.html
I Matplotlib documentation: https://matplotlib.org/api/pyplot_summary.html
I Custom style-sheets: https://matplotlib.org/users/customizing.html
I Pandas plotting documentation:

https://pandas.pydata.org/pandas-docs/stable/visualization.html
I Seaborn documentation: https://seaborn.pydata.org/
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More tools
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Argparse
Easy parsing of commandline options using argparse.

import argparse

parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("integers", metavar="N", type=int, nargs="+",

help="an integer for the accumulator")
parser.add_argument("--sum", dest="accumulate", action="store_const",

const=sum, default=max,
help="sum the integers (default: find the max)")

args = parser.parse_args()
print(args.accumulate(args.integers))

$ script.py --sum 1 2 3 4
10
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Webscraping
Requests

requests perform web-requests, both GET and POST (and more) to interact with anything
reachable over the internet.
BeautifulSoup parses XML/HTML documents.

import requests
from bs4 import BeautifulSoup

# Re-use the connection to the server
session = requests.Session()
# Get the webpage
response = session.get(url)
# Fail early if unexpected response
response.raise_for_status()
# Read it into a datastructure that is easy to query
soup = BeautifulSoup(response.text, "lxml")
links = [a[’href’] for a in soup.select("a.internal")]
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Snakemake
Automate your analysis flow using snakemake.

rule targets:
input:

"plots/dataset1.pdf",
"plots/dataset2.pdf"

rule plot:
input:

"raw/{dataset}.csv"
output:

"plots/{dataset}.pdf"
shell:

"somecommand {input} {output}"
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Subprocess
Sometimes you need to run external commands, for which no Python module exists. This can be
done with the subprocess module.
It has recently (Python 3.7) been simplified a lot:

import subprocess

result = subprocess.run(["du", "-h", "."], capture_output=True)
print(result.stdout)
print(result.stderr)
# ...

result2 = subprocess.run(["cat"], capture_output=True, input=b"test")
print(result2.stdout)
# b’test’

July 2, 2021 Data Visualization – Jonas Eschle Page 47



Department of Physics

Frameworks

Some fields have even created their own toolkits:
I Computational biology: https://biopython.org/
I Astronomy: http://www.astropy.org/
I High-energy particle physics: https://github.com/scikit-hep
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