Nicola Chiapolini, 2021-06-29

Test, Debug, Profile

Nicola Chiapolini

Physik-Institut
University of Zurich

2021-06-29

Based on a talk by Pietro Berkes
®0 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.


https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, 2021-06-29 2/48

Introduction es ebug Profile

Scientific Programming

Goal

» allow exploring many different approaches
» allow frequent changes and adjustments
» produce correct and reproducible results

Requirements

» bugs most be noticed

» code can be modify easily

» others can run code too

» scientist’s time is used optimally



Nicola Chiapolini, 2021-06-29 3/48
Introduction

Effect of Software Errors

—>

Frequency

—>
Severity



Nicola Chiapolini, 2021-06-29

RETRACTION | VOLUVE
Retraction Notice to: How birds outperform humans in multi-
component behavior

Sara Letzner (=1 « Onur Guntirkin « Christian Beste 2 =1

DO https//doi.org/10.1016/j.cub.2020.02.006

= PlumX Metrics

(Current Biology 27, R996-R998; September 25, 2017)

In our Correspondence, we reported evidence leading us to conclude that pigeons are on par with
humans when tested with a behavioral task that demands simultaneous processing resources; in
particular, we claimed that pigeons show faster responses than humans when sub-tasks are
separated with a short STOP-CHANGE delay of 300 ms—the “SCD 300" condition (time
advantage of 200 ms). We have subsequently discovered, however, that the MATLAB script that
was used for the analysis of reaction times in the pigeon paradigm was wrongly indexed

Retraction Watch

Error in one line of code sinks cancer study

without comments

Authors of a 2016 cancer paper have retracted it after finding an error in one line of code in the
program used to calculate some of the results.



Nicola Chiapolini, 2021-06-29

Introduction

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

» standard python tools
» ipython magic commands
» mostly command line



Nicola Chiapolini, 2021-06-29

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 2021-06-29 71748

Testing

Something you do anyway.

» run code and see if it crashes
» check if output makes sense
» run code with trivial input

> ...



Nicola Chiapolini, 2021-06-29

Formal Testing

>

>
>
>
|

important part of modern software development
unittest and integration tests

tests written in parallel with code

tests run frequently/automatically

generate reports and statistics

8/48



Nicola Chiapolini, 2021-06-29 9/48

Benefits

» only way to trust your code
» faster development

» know where your bugs are
» fixing bugs will not (re)introduce others
» change code with out worrying about consistency

» encourages better code
» provides example/documentation



Nicola Chiapolini, 2021-06-29 10/48

An Example

def remove(thelist, entry):
"t remove entry object from list """
for idx, item in enumerate(thelist):
if entry is item:
del thelist[idx]
break
else:
raise ValueError("Entry not in the list")

Assume we find this code in an old library of ours.



Nicola Chiapolini, 2021-06-29 10/48

An Example

def remove(thelist, entry):
"t remove entry object from list """
thelist.remove (entry)

We prefer to keep it simple! Everything fine, right?



An Example

def remove(thelist, entry):
"t remove entry object from list """
thelist.remove (entry)



11/48

Nicola Chiapolini, 2021-06-29

Start Testing

At the beginning, testing feels weird:

1. It's obvious that this code works
2. The tests are longer than the code
3. The test code is a duplicate of the real code

— it might take a while to get used to testing,
but it will pay off quiet rapidly.



Nicola Chiapolini, 2021-06-29

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 2021-06-29 13/48

unittest

» library for unittests
» part of standard python
> at the level of other modern tools

Alternatives

> pytest


https://docs.pytest.org/en/latest/

Nicola Chiapolini, 2021-06-29 14/48

Anatomy of a TestCase

import unittest
class DemoTests(unittest.TestCase):

def test_boolean(self):
nnn- tests start with 'test’ """
self.assertTrue(True)
self.assertFalse(False)

def test_add(self):
"t docstring can be printed """
self.assertEqual(2+1, 3)

if __name__ == "__main__":
nnit-egecute all tests im module """
unittest.main()



Nicola Chiapolini, 2021-06-29

Debug

Summary on Anatomy

Test Cases

» are subclass of unittest.TestCase
» group test units

Test Units

» methods, whose names start with test
» should cover one aspect

» check behaviour with "assertions"

» rise exception if assertion fails



Nicola Chiapolini, 2021-06-29 16/48

Running Tests

Option 1 execute all test units in all test cases of this file
if __name__ == "__main__":
unittest.main(verbosity=1)

Option 2 Execute all tests in one file

Option 3 Discover all tests in all submodules



Nicola Chiapolini, 2021-06-29 17/48

TestCase.assertSomething

» check boolean value

assertTrue('Hi'.islower()) # fail
assertFalse('Hi'.islower()) # pass

» check equality

assertEqual (2+1, 3) # pass
" assertEqual can compare all sorts of objects """
assertEqual ([2]+[1], [2, 11) # pass

» check numbers are close

from math import sqrt, pi

assertAlmostEqual (sqrt(2), 1.414, places=3) # pass
nin-yglues are rounded, mot truncated """
assertAlmostEqual (pi, 3.141, 3) # fail
assertAlmostEqual (pi, 3.142, 3) # pass



Nicola Chiapolini, 2021-06-29 18/48

TestCase.assertRaises

» most convenient with context managers
with self.assertRaises (ErrorType):
do_something ()
do_some_more ()

» Important: use most specific exception class

bad_file = "inexistent"
with self.assertRaises(FileNotFoundError): # raises NameError
open(bad_fil, 'r')

with self.assertRaises(Exception):
open(bad_fil, 'r') # pass



Nicola Chiapolini, 2021-06-29 19/48

TestCase.assertMoreThings

assertGreater(a, b)
assertlLess(a, b)

assertRegex(text, regexp)
assertIn(value, sequence)
assertIsNone (value)
assertIsInstance (my_object, class)

assertCountEqual (actual, expected)

complete list at
https://docs.python.org/3/library/unittest.html


https://docs.python.org/3/library/unittest.html

Nicola Chiapolini, 2021-06-29 20/48

TestCase.assertNotSomething

Most of the assert methods have a Not version

assertEqual
assertNotEqual

assertAlmostEqual
assertNotAlmostEqual

assertIsNone
assertIsNotNone



Nicola Chiapolini, 2021-06-29 21/48

Testing with numpy

numpy arrays have to be compared elementwise

class SpecialCases(unittest.TestCase):
def test_numpy(self):
a = numpy.array([1, 2])
b = numpy.array([1, 2])
self .assertEqual(a, b)



Nicola Chiapolini, 2021-06-29 22/48

numpy.testing

» defines appropriate function

numpy . testing.assert_array_equal (x, y)
numpy . testing.assert_array_almost_equal(x, y, decimal=6)

» use numpy functions for more complex tests

numpy .all(x) # True t1f all elements of = are true
numpy . any (x) # True 2f any of the elements of x is true
numpy.allclose(x, y) # True if element-wise close

Example

"t test that all elements of = are between 0 and 1 """
assertTrue(all(logical_and(x > 0.0, x < 1.0))



Nicola Chiapolini, 2021-06-29 23/48

Strategies for Testing

» What does a good test look like?
» What should | test?

» What is special for scientific code?



Nicola Chiapolini, 2021-06-29 24/48

What does a good test look like?

Given put system in right state

> create objects, initialise parameters, ...
» define expected result

When action(s) of the test
» one or two lines of code

Then compare result with expectation
> set of assertions



Nicola Chiapolini, 2021-06-29 25/48

What does a good test look like? — Example

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
# given
string = 'HeLl0 wOrld'
expected = 'hello world'

# when
result = string.lower()

# then
self.assertEqual (result,expected)



Nicola Chiapolini, 2021-06-29 26/48

What should | test?

» simple, general case
string = 'HelLl0 wOrld'

» corner cases
string = ''
string = 'hello'
string = '1+2=3'

often involves design decisions
> any exception you raise explicitly

» any special behaviour you rely on



Nicola Chiapolini, 2021-06-29 27/48

Reduce Overhead 1: Loops

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):

# given
# Each test case is a tuple (input, ezpected)
test_cases = [('HeLl0 wOrld', 'hello world'),
('hi', 'hi'),
('123 ([?', '123 ([?"),
(G
for string, expected in test_cases:
# run several subtests
# when
output = string.lower()
# then
self.assertEqual (output, expected)



Nicola Chiapolini, 2021-06-29 28/48

Reduce Overhead 1: Subtests

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
# given
# Each test case is a tuple (input, ezpected)
test_cases = [('HeLl0 wOrld', 'hello world'),
(‘hi', 'hi'),
(*123 ([7', '"123 ([?"),
(G
for string, expected in test_cases:
with self.subTest(config = string):
# when
output = string.lower()
# then
self.assertEqual (output, expected)



Nicola Chiapolini, 2021-06-29 29/48

Reduce Overhead 2: Fixtures

> allow to use same setup/cleanup for several tests

» useful to

» create data set at runtime
» |oad data from file or database
» create mock objects

» available for test case as well as test unit

class FixureTestCase(unittest.TestCase):

Q@classmethod
def setUpClass(cls): # called at start of TestCase
def setUp(self): # called before each test

def tearDown(self): # called at end of each test



Nicola Chiapolini, 2021-06-29 30/48

What is special for scientific code?
often deterministic test cases very limited/impossible

Numerical Fuzzing

» generate random input (print random seed)
> still need to know what to expect

Know What You Expect

» use inverse function

» generate data from model

» add noise to known solutions

» test general routine with specific ones

» test optimised algorithm with brute-force approach



Nicola Chiapolini, 2021-06-29 31/48

Automated Fuzzying: Hypothesis (ot in standard library)

hypothesis generates test inputs according to given properties.

import unittest, numpy
from hypothesis import given, strategies as st

class SumTestCase(unittest.TestCase):
Ogiven(st.lists(st.integers(), min_size=2, max_size=2))

def test_sum(self, vals):
self.assertEqual(vals[0]+vals[1], numpy.sum(vals))

Why?

» cover large search-space (default 100 inputs)
» good for finding edge cases
» less manual work


https://hypothesis.works/

Nicola Chiapolini, 2021-06-29 32/48
ntro O ebug

Profile

Test Driven Development (TDD)

Tests First

» choose next feature
> write test(s) for feature
» write simplest code

Benefits

» forced to think about design before coding
» code is decoupled and easier to maintain
» you will notice bugs



DEMO



Nicola Chiapolini, 2021-06-29

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



35/48

Nicola Chiapolini, 2021-06-29

doctest

> poor man’s unittest
» ensure docstrings are up-to-date

def add(a,b):
nntqdd two numbers

>>> add(40,2)
42

mnn

return at+b



iapolini, 2021-06-29

Debug

Code Coverage

» it's easy to leave part untested

» features activated by keyword
» code to handle exception

» coverage tools track the lines executed
coverage.py

» python script
» produces text and HTML reports

» not in standard library
get from https://coverage.readthedocs.io/en/latest/


https://coverage.readthedocs.io/en/latest/

DEMO



Nicola Chiapolini, 2021-06-29

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 2021-06-29 39/48

Intr n

Debugging

» use tests to avoid bugs and limit ,search space”
» avoid print statements
» use debugger

pdb — the Python debugger

» command line based

» opens an interactive shell
> allows to

» stop execution anywhere in your code
» execute code step by step

» examine and change variables

» examine call stack



Nicola Chiapolini, 2021-06-29 40/48

Entering pdb

» enter at start of file

> enter at statement/function
import pdb
# your code here
pdb.run(expression_string)

» enter at point in code

# some code here
# the debugger starts here

# rest of the code

» from ipython

%pdb # enter pdb on ezception
/debug # enter pdb after exception



DEMO



Nicola Chiapolini, 2021-06-29 42/48

Profile

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats



Nicola Chiapolini, 2021-06-29 43/48

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible



Nicola Chiapolini, 2021-06-29 43/48

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible



ini, 2021-06-29

timeit

» precise timing for function/expression
» test different versions of a code block
» easiest with ipython’s magic command

a**2 or pow(a,2)?
In [1]: a = 43563

In [2]: timeit pow(a,2)
10000000 loops, best of 5: 268 ns per loop

In [3]: %timeit a*#*2
10000000 loops, best of 5: 209 ns per loop

Profile



Nicola Chiapolini, 2021-06-29 45/48

cProfile & Pstats

Profiling identify where most time is spent
cProfile standard python module for profiling
pstats tool to look at profiling data

» run cProfile

» analyse output from shell



Nicola Chiapolini, 2021-06-29 46/48

Non-Standard Tools

» pyprof2calltree and kcachegrind: open cProfile output in GUI

» pprofile: line-granularity profiler


https://pypi.org/project/pyprof2calltree/
http://kcachegrind.sourceforge.net/html/Home.html
https://github.com/vpelletier/pprofile

DEMO



Nicola Chiapolini, 2021-06-29 48/48

Final Thoughts

» testing, debugging and profiling can help you a lot
» using the right tools makes life a lot easier
» python comes with good tools included

> it's as easy as it gets — there are no excuses



	Introduction
	Test
	unittest
	doctest & coverage
	coverage

	Debug
	pdb

	Profile
	timeit
	cProfile


