OQP in Python, Scientific Programming with Python 2021 1

University of
Zurich™ P

Department of Physics Scientific Programming with Python

OOP in Python June 28, 2021
Exercises

Exercise 1: Ducks [basic]

Look again at the slides on the strategy pattern and use the code examples to define the
following duck-classeqT}

e NormalDuck (use as base class)
e RedheadedDuck
e BlackDuck
e RubberDuck
e DecoyDuck
Once you defined these classes:

(a) Write a script in which you create the following duck-instances: 3 normal, 3 red-
headed, 1 black, 1 rubber and 1 decoy duck. Store all ducks in a list and then call
display for each of the ducks.

(b) Inyour script, let one of the normal ducks ,,break its wings”. (Replace the f1ying_behavoir
of the unlucky duck-object.) Compare what happens when you call the flying-
functions of the unlucky duck and one of the other normal ducks.

(c) Change your duck classes such that you can give your individual ducks a name. Use
that name when displaying the duck.

(d) fintermediate] Change your duck classes such that they store their position (as a
string). Let £1y_to change the position and display the present position on take off
and landing.

(e) Add more functionality, be creative.

You are of course free to use real duck breeds (see/https://en.wikipedia.org/wiki/List_of_duck_
breeds)) if you prefer.

Jonas Eschle June 28, 2021

https://en.wikipedia.org/wiki/List_of_duck_breeds
https://en.wikipedia.org/wiki/List_of_duck_breeds

OQP in Python, Scientific Programming with Python 2021 2

Exercise 2: Vectors [basic]

The file vector.py contains an implementation of an n-dimensional vector. Some of the
functions are not yet complete:

(a) Implement the addition of two vectors via the magic function __add__. Make sure
that the dimensions of the two vectors are aligned.

(b) Do the same for the scalar product with the function - mul__.

(¢) Implement __str__ which is the magic function to represent the vector as string (i.e.
str(v)). Define a reasonable string representation.

(d) Create the property length that

e returns the Euclidiean length of the vector
e allows to scale the vector to a new length by v.length = <new_length>

e sets the vector to zero via del v.length.

(e) Create a subclass for three-dimensional vectors Vector3D with a suitable constructor
and implement the magic function __matmul__ (the operator @) as cross—productﬂ
Important: The implementation should NOT lead to any change in the parent class.

Exercise 3: Scatter plot [basic]

Take pen and paper and design a class representing scatter plots that can be drawn.
e What variables does a scatter plot have?
e What methods does it have?

e How do the signatures of these methods look like?

Exercise 4: Understanding OOP [basic]

The graph module (provided in the archive) contains a set of classes for representing
graphs (i.e. nodes and edges connecting them). On a piece of paper reverse engineer its
design:

(a) Write down all class names, their methods and data attributes; try to understand
what all of them do (read the documentation!).

b) Figure out how different classes are related. Where is inheritance used, where com-
g
position? Draw a simple diagram.

T1 X2 Yi1z2 — Y221
2The cross-product is defined as v =v1 Xv2a = [y1 | X [y2 | = | 2122 — 2271

21 zZ2 T1Y2 — T2Y1

Jonas Eschle June 28, 2021

OQP in Python, Scientific Programming with Python 2021 3

(c) Use the classes to construct the following graph:

Exercise 5: Decorator Pattern [intermediate]

Look at the code in starbuzz.py and estimate the changes needed to add two more
ingredients Cream and Sprinkles. Then adapt the code to use the Decorator Pattern.

(a) Remove all the ingredients-code from Beverage.
(b) Use the Ingredient class given in the slides to define Milk and Sugar ingredients.

(¢) Improve and simplify your code further. For Example by moving as much as possible
of the functionality from the subclasses into Ingredient (instead of repeating it).

(d) Define two more ingredients Cream and Sprinkles.

(e) Use the ingredients to produce new drinks combinations.

Exercise 6: Extending Classes [advanced]

Extend the graph library to solve a search problem. In this exercise, your goal is to
write a travel planning application based on the graph module. We want to represent a
set of cities as nodes in a graph, with edges between nodes representing different kinds
of transportation.

(a) Define a class CityNode which extends the Node class by a new property name which
is defined on class instantiation.

(b) Define a class TransporationEdge extending the Edge class. The edges should be
directed and have two kinds of weights: travel time and cost. Furthermore, they
should have a short description defining the means of transportation.

Jonas Eschle June 28, 2021

OQP in Python, Scientific Programming with Python 2021 4

(c¢) Implement the following city graph as an example:

train
. Hamburg (50 €, 100 min)
train
(100 €, 240 min)
plane
(120 €, 50 min)
plane
(150 €, 30 min) .
Berlin
Cologne
plane plane
(150 €, 40 min) (200 €, 40 min)

Munich

(d) Now we want to find the quickest path from Berlin to Cologne. Open the shortest_path.py
file. It contains a SearchAlgorithm class, which implements the Dijkastra algorithm

for finding the shortest path in a graph.

(e) Define a new class SearchGraph extending the Graph class with methods for search-
ing the shortest path. Which design pattern(s) can you use in the example?

(f) Define new search algorithms to find the cheapest and fastest paths.
(g) Find the cheapest and fastest paths between Berlin and Cologne.

This exercise sheet is based on the exercises written by Bartosz Telenczuk, Niko Wilbert
for the Advanced Scientific Programming in Python School 2011

Jonas Eschle June 28, 2021

