
Hardware-assisted speed-up techniques

Scientific Programming with Python

Roman Gredig

Overview
• Motivation

• The Data Access Issue

• Why modern CPUs are starving?

• Caches and the hierarchical memory model

• Techniques for fighting data starvations

• High Performance Libraries

Based on the lecture slides of

Francesc Alted

"Advanced Scientific Programming in Python"

Summer School 2013, Zurich

This work is licensed under the

Creative Commons Attribution-ShareAlike 3.0 License.

2

Motivation

3

Computing a Polynomial

We want to compute the polynomial:

y = 0.25x3 + 0.75x2 − 1.5x − 2

in the range [-1,1], with granularity of 10 million points on the x-axis

… and we want to do that as FAST as possible …

4

use NumPy

NumPy is a powerful package that let you perform calculations with Python,  
but at C speed: 
(see previous talks)

That takes around 0.86 sec on our machine (Intel Core i5-3380M CPU @ 2.90GHz).

Hint: use %timeit in ipython for easy benchmarking

How to make it faster?

import numpy as np

N = 10*1000*1000

x = np.linspace(-1, 1, N)

y = .25*x**3 + .75*x**2 - 1.5*x - 2

5

"Quick & Dirty" Approach: Parallelize

• The problem of computing a polynomial is “embarrassingly” parallelizable:
just divide the domain to compute in N chunks and evaluate the expression
for each chunk.

• This can be easily implemented in Python by, for example, using the
multiprocessing module. See poly-mp.py script.

• Using 2 cores, the 0.86 sec is slowed down to 0.88 sec! WTF?

• Why do I even buy a multi-core computer?

6

Another (Much Easier) Approach:
Factorize

• The NumPy expression: 
(I) 
 
can be written as 
 
(II)

• With this, the time goes from 0.86 sec to 0.107 sec, which is much faster (8x)
than using two processors with the multiprocessing approach (0.88 sec).

y = .25*x**3 + .75*x**2 - 1.5*x - 2

y = ((.25*x + .75)*x - 1.5)*x - 2

Give optimization a chance before parallelizing!

7

Numexpr Can Compute Expressions  
Way Faster

• Numexpr is a JIT compiler, based on NumPy, that optimizes the evaluation of
complex expressions. Its use is easy:

• That takes around 0.059 sec to complete, which is 15x faster than the
original NumPy expression (0.86 sec).

import numpy as np

import numexpr as ne

N = 10*1000*1000

x = np.linspace(-1, 1, N)

ne.set_num_threads(1) # use only one thread/cpu

y = ne.evaluate('.25*x**3 + .75*x**2 - 1.5*x - 2')

8

Fine-tune Expressions with Numexpr

• Numexpr is also sensible to computer-friendly expressions like: 
 
(II)

• Numexpr takes 0.046 sec for the above (0.059 sec were needed for the
original expression, that’s a 28% faster)

y = ((.25*x + .75)*x - 1.5)*x - 2

9

Using Multiple Threads with Numexpr

• Numexpr accepts using several processors:

• That takes around 0.029 sec to complete, which is a 60% faster than using a
single processor (0.046 sec).

import numpy as np

import numexpr as ne

N = 10*1000*1000

x = np.linspace(-1, 1, N)

ne.set_num_threads(2)

y = ne.evaluate('((.25*x + .75)*x - 1.5)*x - 2')

10

Summary and Open Questions

• If all the approaches perform the same computations, all in C space, why the
wild differences in performance?

• Why the different approaches do not scale similarly in parallel mode?

1 core 2 cores Parallel Speedup

NumPy (I) 0.876 0.877 0.98x

NumPy (II) 0.107 0.484 0.22x

Numexpr (I) 0.059 0.034 1.74x

Numexpr (II) 0.046 0.029 1.59x

 (I) y = .25*x**3 + .75*x**2 - 1.5*x - 2

(II) y = ((.25*x + .75)*x - 1.5)*x - 2

11

A First Answer:  
Power Expansion and Performance

Numexpr expands the expression: 
 
 
 
to 
 
 
 
so, no need to use the expensive pow()

0.25*x*x*x + 0.75*x*x + 1.5*x - 2

0.25*x**3 + 0.75*x**2 + 1.5*x - 2

12

One (Important) Remaining Question

Why can numexpr execute this expression:

more than 2x faster than NumPy?

((.25*x + .75)*x - 1.5)*x - 2

13

One (Important) Remaining Question

Why can numexpr execute this expression:

more than 2x faster than NumPy?

By making a more efficient use of the memory resource

((.25*x + .75)*x - 1.5)*x - 2

14

The Data Access
Issue

15

Quote Back in 1993

“We continue to benefit from tremendous increases in the raw speed of
microprocessors without proportional increases in the speed of memory.
This means that 'good' performance is becoming more closely tied to good
memory access patterns, and careful re-use of operands.”

“No one could afford a memory system fast enough to satisfy every (memory)
reference immediately, so vendors depends on caches, interleaving, and other
devices to deliver reasonable memory performance.”

– Kevin Dowd, after his book “High Performance Computing”, 
O’Reilly & Associates, Inc, 1993

16

Quote Back in 1996

“Across the industry, today’s chips are largely able to execute code faster than
we can feed them with instructions and data. There are no longer performance
bottlenecks in the floating-point multiplier or in having only a single integer unit.
The real design action is in memory subsystems, caches, buses, bandwidth, and
latency.”

“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors.”

– Richard Sites, after his article “It’s The Memory, Stupid!”, 
Microprocessor Report, 10(10),1996

17

CPU vs. Memory Cycle Trend

CPU speed increases much faster than memory speed → performance gap

18

Book in 2009

19

The CPU Starvation Problem

• Memory latency is much slower (between 250x and 500x) than processors
and has been an essential bottleneck for the past fifteen years.

• Memory throughput is improving at a better rate than memory latency, but it
is also much slower than processors (between 30x and 100x).

The result is that CPUs in our current computers are suffering from a serious
starvation data problem:

They could consume (much!) more data than the system can possibly
deliver.

20

What Is the Industry Doing to Alleviate
CPU Starvation?

• They are improving memory throughput: cheaper to implement (more data is
transmitted on each clock cycle).

• They are adding big caches in the CPU dies (i.e. the “chip”).

• Different types of memory:

• regular memory: dynamic RAM (DRAM)

• cheap

• dense

• needs periodic refresh

• cache memory: static RAM (SRAM)

• more complex

• no refresh needed

• increased power consumption

21

What Is the Industry Doing to Alleviate
CPU Starvation?

• They are improving memory throughput: cheaper to implement (more data is
transmitted on each clock cycle).

• They are adding big caches in the CPU dies (i.e. the “chip”).

• Different types of memory:

• regular memory: dynamic RAM (DRAM)

• cheap

• dense

• needs periodic refresh

• cache memory: static RAM (SRAM)

• more complex

• no refresh needed

• increased power consumption

22

Why Is a Cache Useful?

• Caches are closer to the processor (normally in the same die), so both the
latency and throughput are improved.

• However: the faster they run the smaller they must be.

• They are effective mainly in a couple of scenarios:

• Time locality: when the dataset is reused.

• Spatial locality: when the dataset is accessed sequentially.

23

Time Locality

Parts of the dataset are reused

24

Space Locality

Dataset is accessed sequentially

25

The Hierarchical Memory Model

• Introduced by industry to cope with CPU data starvation problems.

• It consists in having several layers of memory with different capabilities:

• Lower levels (i.e. closer to the CPU) have higher speed, but reduced
capacity. Best suited for performing computations.

• Higher levels have reduced speed, but higher capacity. Best suited for
storage purposes.

26

The Primordial Hierarchical Memory
Model

Two level hierarchy:

27

The 2000’s Hierarchical Memory Model

Four level hierarchy:

28

The Current Hierarchical Memory Model

Six level (or more) hierarchy:

29

The Current Hierarchical Memory Model

Six level (or more) hierarchy:
processor 0

L3 cache

core 0
CPU

L2 cache

L1

core 1
CPU

L2 cache

L1

processor 1

L3 cache

core 2
CPU

L2 cache

L1

core 3
CPU

L2 cache

L1

main memory

one example (layouts differ a lot):

30

Once Upon A Time …

• In the 1970s and 1980s many computational scientists had to learn assembly
language in order to squeeze all the performance out of their processors.

• "written in assembler" used to be an advertisement

• In the good old days, the processor was the key bottleneck.

31

Nowadays …

• Every computer scientist must acquire a good knowledge of the hierarchical
memory model (and its implications) if they want their applications to run at a
decent speed (i.e. they do not want their CPUs to starve too much).

• Memory organization has become now the key factor for optimizing.

• You don't need to know how to put data in the cache,  
but help the OS to do it efficiently.

32

The Blocking Technique

When you have to access memory, get a contiguous block that fits in the CPU
cache, operate upon it or reuse it as much as possible, then write the block back
to memory:

33

Understand NumPy Memory Layout

Being a a squared array (4000x4000) of doubles, we have:

Summing up column-wise:

Summing up row-wise: more than 100x faster (!)

NumPy arrays are ordered row-wise (C convention) by default

When would a[1,:].sum() be slower than a[:,1].sum()?

a[:,1].sum() # takes 9.3 ms

a[1,:].sum() # takes 72 µs

34

Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

Vectorized matrix-matrix multiplication: 20 s (64x faster)

def dot_naive(a,b):

 c = np.zeros((nrows, ncols), dtype='f8')

 for row in range(nrows):

 for col in range(ncols):

 for i in range(nrows):

 c[row,col] += a[row,i] * b[i,col]

 return c

def dot(a,b):

 c = np.empty((nrows, ncols), dtype='f8')

 for row in range(nrows):

 for col in range(ncols):

 c[row, col] = np.sum(a[row] * b[:,col])

 return c

35

Interlude: Resolving More Open
Questions

36

Interlude: Resolving More Open
Questions

37

Interlude: Resolving More Open
Questions

38

Interlude: Resolving More Open
Questions

39

?

NumPy And Temporaries

Computing "a*b+c" with NumPy. Temporaries goes to memory.

40

Numexpr Avoids (Big) Temporaries

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

41

Mysteries (almost) Solved Now

1 core 2 cores Parallel Speedup

NumPy (I) 0.876 0.877 0.98x

NumPy (II) 0.107 0.484 0.22x

Numexpr (I) 0.059 0.034 1.74x

Numexpr (II) 0.046 0.029 1.59x

 (I) y = .25*x**3 + .75*x**2 - 1.5*x - 2

(II) y = ((.25*x + .75)*x - 1.5)*x - 2

42

But why does is scale so differently ?

Numba: Overcoming numexpr Limitations

• Numba is a JIT compiler that can translate a subset of the Python language
into machine code

• For a single thread, it can achieve similar or better performance than
numexpr, but with more flexibility

• The costs of compilation can be somewhat high though

• Free software

43

Numba Example: Computing the
Polynomial
from numba import jit

import numpy as np

N = 10*1000*1000

x = np.linspace(-1, 1, N)

y = np.empty(N, dtype=np.float64)

@jit

def poly(x, y):

 for i in range(N):

 y[i] = ((0.25*x[i] + 0.75)*x[i] + 1.5)*x[i] - 2

poly(x, y) # run through Numba!

print(y)

44

Times for Computing the Polynomial

1 core 2 cores Parallel Speedup

NumPy (I) 0.876 0.877 0.98x

NumPy (II) 0.107 0.484 0.22x

Numexpr (I) 0.059 0.034 1.74x

Numexpr (II) 0.046 0.029 1.59x

Numba (I) 0.731

Numba (II) 0.037

 (I) y = .25*x**3 + .75*x**2 - 1.5*x - 2

(II) y = ((.25*x + .75)*x - 1.5)*x - 2

Compilation time for Numba: 0.321 sec

45

Steps To Accelerate Your Code

In order of importance:

• Make use of memory-efficient libraries (many of the current bottlenecks fall into this
category).

• Apply the blocking technique and vectorize your code.

• Parallelize using:

• Multi-threading (using Cython, numexpr, …).

• Multi-processing (via the multiprocessing module in Python)

• Explicit message passing (IPython, MPI via mpi4py).

Parallelization is usually a pretty complex thing to program, so let’s use existing
libraries first!

46

Summary

• These days, you should understand the hierarchical memory model if you
want to get decent performance.

• Leverage existing memory-efficient libraries for performing your computations
optimally.

• Do not blindly try to parallelize immediately. Do this as a last resort!

47

More Info

• Ulrich Drepper: 
What Every Programmer Should Know About Memory  
RedHat Inc.,2007

• Bruce Jacob: 
The Memory System 
Morgan & Claypool Publishers, 2009 (77 pages)

• Francesc Alted 
Why Modern CPUs Are Starving and What Can Be Done about It  
Computing in Science and Engineering, March 2010

48

http://people.redhat.com/drepper/cpumemory.pdf
http://dx.doi.org/10.2200/S00201ED1V01Y200907CAC007
http://dx.doi.org/10.1109/MCSE.2010.51

Exercises

• Just play around with different equations and settings to understand your
hardware. Try to predict the outcome, before you measure the performance.

• If possible, try to experiment with your own hardware instead of the virtual
machine. 
You only need numpy, numexpr, numba and the multiprocessing module.

• If you have enough resources increase the number of cores on the virtual
machine.

• Discuss the different results you will have within the group.

49

Acknowledgment

Based on the slides of Francesc Alted

50

https://python.g-node.org/python-summerschool-2013/starving_cpu.html

Extra

51

Some High Performance Libraries

• BLAS: Routines that provide standard building blocks for performing basic
vector and matrix operations.

• ATLAS: Memory efficient algorithms as well as SIMD algorithms so as to
provide an efficient BLAS implementation.

• MKL: (Intel’s Math Kernel Library): Like ATLAS, but with support for multi-core
and fine-tuned for Intel architecture. Its VML subset computes basic math
functions (sin, cos, exp, log...) very efficiently.

• Numexpr: Performs relatively simple operations with NumPy arrays without
the overhead of temporaries. Can make use of multi-cores.

• Numba: Can compile potentially complex Python code involving NumPy
arrays.

52

