Best Practices

Nicola Chiapolini

Physik-Institut
University of Zurich

2021-06-28

Based on talk by Valentin Haenel = https://github.com/esc/best-practices-talk
®0 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://github.com/esc/best-practices-talk
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, 2021-06-28 2/27

Introduction

Introduction
» We write code regularly
» We have not been formally trained

Best Practices

» evolved from experience

» increase productivity

» decrease stress

» still evolve with tools and languages

Development Methodologies

» e.g. Agile Programming or Test Driven Development
» lots of buzzwords
» still many helpful ideas

Nicola Chiapolini, 2021-06-28 3/27

Outline

Introduction

Style and Documentation
Special Python Statements
KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, 2021-06-28 4/27

Outline

Style and Documentation

Nicola Chiapolini, 2021-06-28 5/27

Coding Style

» readability counts (often more than brevity or speed)
» give things intention revealing names

Example

def fun(n):
nnn no cOmment nnn
r=1
for i in n:
r *= i
return r

https://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, 2021-06-.
Style and Documentation

Coding Style
» readability counts (often more than brevity or speed)

» give things intention revealing names

» For example: numbers instead of n
» For example: numbers instead of 1ist_of_float_numbers

» See also: Ottinger’s Rules for Naming

Example

def my_product (numbers) :

" Compute the product of a sequence of numbers. ""!

total = 1
for item in numbers:

total *= item

return total

https://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, 2021-06-28 6/27

Formatting Code

» use coding conventions, e.g: PEP-8
» conventions specify

> layout

» whitespace

» comments

» naming

> ..

» OR use a consistent style (especially when collaborating)

https://www.python.org/dev/peps/pep-0008/

apolini, 2021-06-28

Style and Documentation St

Formatting Code: Tools

Checker

» pylint (e.9. pylint3 my_product.py)

» pycodestyle (e.g. python3 -m pycodestyle my_product.py)
» pydocstyle (e.g. python3 -m pydocstyle my_product.py)
> flake8 (e.g. python3 -m flake8 my_product.py)

Formatter
» autopep8 (e.g autopep8 --in-place my_product.py)
» yapf3 (e.g yapf3 --in-place my_product.py)
» black (e.g. black my_product.py)

https://www.pylint.org/
https://pypi.org/project/pycodestyle/
http://www.pydocstyle.org/en/latest/
https://pypi.org/project/flake8/
https://pypi.org/project/autopep8/
https://github.com/google/yapf
https://github.com/psf/black

Nicola Chiapolini, 2021-06-28 8/27

Documenting Code: Docstrings

Example

def my_product (numbers) :

Vv VVY

v

" Compute the product of a sequence of numbers. """

at least a single line
also for yourself
is on-line help too

Document arguments and return objects, including types

For complex algorithms, document every line,
and include equations in docstring

Use docstring conventions: PEP257 and/or numpy

https://www.python.org/dev/peps/pep-0257/
https://github.com/numpy/numpy/blob/main/doc/HOWTO_DOCUMENT.rst.txt

Nicola Chiapolini, 20:

Style ocumentation

Example Docstring

def my_product (numbers) :

" Compute the product of a sequence of numbers.

Parameters
numbers :@ sequence
list of numbers to multiply

Returns
product : number
the final product

Raises

TypeError
1f argument is not a sequence or sequence contains
types that can't be multiplied

mon

Nicola Chiapolini, 2021-06-28 10/27

Style and Documentation

Documenting Your Project

» tools generate website
from docstrings

my_product_docstring module

> pydoc —
> sphinx v '
» Overview List

Raises: TypeError

» when project gets bigger

> how-to
> FAQ
> quick-start

https://docs.python.org/3/library/pydoc.html
https://www.sphinx-doc.org/en/master/
https://wiki.python.org/moin/DocumentationTools

Nicola Chiapolini, 2021-06-28 11/27

Outline

Special Python Statements

Nicola Chiapolini, 2021-06-28 12/27

Special Python Statements

import

» Don’t use the starimport: from module import *

» not obvious what you need

» modules may overwrite each other

» Where does this function come from?

» will import everything in a module

» ...unless you have a very good reason: e.g. pylab, interactive

» Put all imports at the beginning of the file. ..
» ...unless you have a very good reason

Example

import my_product as mp
mp .my_product ([1,2,3])

from my_product import my_product
my_product([1,2,3])

Nicola Chiapolini, 2021-06-28 13/27
Special P! Statements

import: Pitfalls

Python evaluates the imported code at import time.

nn

""" Bad Things happen here.

def append_one(list_=[]):
""" Do not use mutable default values """
list_.append(1)
return list_

def default_arg(bad=1 / 0):
""" Do mot trigger exceptions in keyword-arguments
return bad

nnn

def constants():
" This can not be imported im Python < 3.6 """
return 9999999 ** 9999999

Nicola Chiapolini, 2021-06-28

14/27
Special Python Statements

Exceptions

» use try, except and raise
» often better then if (e.g. IndexError)

Example

try:
my_product (1, 2, 3)
except TypeError as e:

raise TypeError("'my_product' expects a sequence") from e

» don’t use special return values:
1, 0, False, None

» Fail early, fail often
» use built-in Exceptions

https://docs.python.org/3/library/exceptions.html

Nicola Chiapolini, 2021-06-28

KIS(S) & DRY

Outline

KIS(S) & DRY

Nicola Chiapolini, 2021-06-28 16/27

Keep it Simple (Stupid) — KIS(S) Principle

Keep it Simple

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.
— Brian W. Kernighan

Nicola Chiapolini, 2021-06-28

KIS(S) & DRY

Don’t Repeat Yourself (DRY)

No copy & paste!

Not just lines code, but knowledge of all sorts

>
»
» Do not express the same piece of knowledge in two places. ..
» ...or you will have to update it everywhere

>

It is not a question of if this may fail, but when

Nicola Chiapolini, 2021-06-28 18/27

Don’t Repeat Yourself (DRY): Types

Example

» Copy-and-paste a snippet, instead of refactoring it into a function
> Repeated implementation of utility methods

» because you don’t remember
» because you don’t know the libraries

numpy .prod([1,2,3])
» because developers don't talk to each other
» Version number in source code, website, readme, package
filename

» If you detect duplication: refactor!

Nicola Chiapolini, 2021-06-28 19/27

Outline

Refactoring

Nicola Chiapolini, 2021-06-28

Refactoring

Vv VvVVYVYyVvyy

re-organise your code without changing its functionality

rethink earlier design decisions
break large code blocks apart
rename and restructure code

will improve the readability and modularity
will usually reduce the lines of code

20/27

Refactoring

Nicola Chiapolini, 2021-06-28 21/27

Common Refactoring Operations

Rename class/method/module/package/function
Move class/method/module/package/function
Encapsulate code in method/function

Change method/function signature

Organise imports (remove unused and sort)

Always refactor one step at a time, and ensure code still works

» version control
» unit tests

Refactoring Example

def product_minus_sum(numbers):
mir-Subtract sum of numbers from product of numbers.
total = 0
for item in numbers:
total += item
total2 = 1
for item in numbers:
total2 *= item
return total - total2

mnn

Nicola Chiapolini, 2021-06-28 22/27
Refactoring

Refactoring Example

from my_math import my_product, my_sum

def product_minus_sum(numbers):
"t Subtract sum of numbers from product of numbers. """
sum_value = my_sum(numbers)
product_value = my_product (numbers)
return sum_value - product_value

» split into functions

Nicola Chiapolini, 2021-06-28 22/27

Refactoring Example

from numpy import prod, sum

def product_minus_sum(numbers):
"t Subtract sum of numbers from product of numbers. """
sum_value = sum(numbers)
product_value = prod(numbers)
return sum_value - product_value

» split into functions
» use libraries/built-ins

Nicola Chiapolini, 2021-06-28 22/27

Refactoring Example

from numpy import prod, sum

def product_minus_sum(numbers):
"t Subtract sum of numbers from product of numbers. """
sum_value = sum(numbers)
product_value = prod(numbers)
return product_value - sum_value

» split into functions
» use libraries/built-ins
» fix bug

Nicola Chiapolini, 2021-06-28 23/27

Outline

Development Methodologies

Nicola Chiapolini, 2021-06-28 2427

What is a Development Methodology?

Consists of:

» process used for development
» tools to support this process

Help answer questions like:

» How far ahead should | plan?
» What should | prioritise?
» When do | write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, 2021-06-28 2427

What is a Development Methodology?

Consists of:

» process used for development
» tools to support this process

Help answer questions like:

» How far ahead should | plan?
» What should | prioritise?
» When do | write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, 2021-06-28 25/27

The Waterfall Model, Royce 1970

)

» sequential
» from manufacturing and construction

Nicola Chiapolini, 2021-06-28 26/27
Development Methodologies

Agile Methods (late 90’s)

» minimal planning, small development iterations
» frequent input from environment
» very adaptive, since nothing is set in stone

Maintenance
A

Testing

Nicola Chiapolini, 2021-06-28 27/27

Test Driven Development (TDD)

Refactor

Optimise

» Define unit tests first!
» Develop one unit at a time!

» more tomorrow

Nicola Chiapolini, 2021-06-28 1/1

An Almost Unrelated Note: Using VirtualEnv

The Problem

» different tools need different versions of a module
» your Linux distribution does not include a module

The Solution: virtualenv

» initialise folder school_venv to store modules of this project
» update the search-paths to include folders in ~/school_venv

» run your code or install libraries with pip
» undo changes to search-paths

	Introduction
	Style and Documentation
	Special Python Statements
	KIS(S) & DRY
	Refactoring
	Development Methodologies
	Appendix
	Virtualenv

