University of
Zurich™ ﬁ

Department of Physics Scientific Programming with Python

Test, Debug, Profile June 23, 2020

ExerCiseS based on exercises from Pietro Berkes
Licence: CC-by-sa

Before you start:

— create a suitable directory for this exercise

— initialise a git repository inside the new directory

— download the file maxima.py from http://www.physik.uzh.ch/~python/python/lecture3/
— add the file to your repository

Remember to commit every significant change to the git repository with a meaningful message.

1 Writing a test suite [basic]

Goals: Write a test suite using the unittest module.

Pretend you have just written the string function center from the module string (https://docs.python.
org/3/library/stdtypes.html#str.center). Now write a test suite, test_center.py, that tests this
function and makes sure it works as documented. At each step, run the tests and make sure they pass
(insert a call to unittest.main() at the end of the script as shown in the slides).

In the suite, write three test cases:

a) The first test case checks the functionality of the function, leaving the argument fillchar set to its
default value. Control that the function works as advertised for

— odd and even widths

— a width smaller than the length of the string
— an empty input string

— a string containing spaces to either extremity

Test that the length of the returned string is correct and that it looks like you expect it to.

Hint: when the number of spaces to be added is odd, there are two possible ways to centre a string.
The docstring does not specify which one is correct, so you should test that the returned string is
one or the other.

b) The second test case checks the functionality of string.center, with fillchar set to specific values.
Test using a letter, a numerical value, and the default value.

c¢) Finally, test that string.center raises a TypeError when fillchar is set to an empty string, and
to a string longer than one character.

Nicola Chiapolini June 23, 2020


http://www.physik.uzh.ch/~python/python/lecture3/
https://docs.python.org/3/library/stdtypes.html#str.center
https://docs.python.org/3/library/stdtypes.html#str.center

Test, Debug, Profile, Scientific Programming with Python 2020 2

2 Deceivingly simple function [intermediate]

Goals: General practice of debugging and unit testing using agile development techniques.

The file maxima.py contains a function, find_maxima, that finds local maxima in a list and returns their
indices. Please read the last sentence again: it returns the indices, not the values ;)

a)

Using ipython, test the function with these input arguments and others of your own invention until
you are satisfied that it does the right thing for typical cases (remember that the function returns
the indices of the maxima):

x = [0, 1, 2, 1, 2, 1, 0]
x = [-i**2 for i in range(-3, 4)]
x = [numpy.sin(2+alpha) for alpha in numpy.linspace(0, 5., 100)]

Now try with the following inputs:
x=1[4, 2, 1, 3, 1, 2]

x=[4, 2, 1, 3, 1, 5]
x = 1[4, 2, 1, 3, 1]

For each bug you find, solve it using the agile programming strategy:

i. Isolate the bug using a debugger
ii. Write a new test case that reproduces the bug. Try to make the test case as simple as possible;
here, this means using the simplest input data that still triggers the bug
iii. Correct the code
iv. Make sure that all the tests pass

Run a coverage analysis on the tests; there should be at least one statement that is not covered.
Write a test that covers it and debug the code

You may think that the code is now clean and robust... Look at the output of the function for the
input list

X = [1: 25 2) 1]

Does the output correspond to your intuition? Think about a reasonable default behaviour in this
situation, and meditate on how such a simple function can hide so many complications

Implement the “reasonable behaviour” you conceived in item (d) and document it in the docstring,
adding a new doctest. Make sure that your function handles these inputs correctly (include them in
the tests):

x=1[1, 2, 2, 3, 1]

x = [1, 3, 2, 2, 1]
X = [3: 25 2: 3]



Test, Debug, Profile, Scientific Programming with Python 2020 3

3 k-Means and numerical fuzzing [advanced]

Goals: Implement a learning algorithm and test it using numerical fuzzing techniques.

k-means clustering is a simple method to assign n-dimensional data points to k groups. Each group
is represented by the its mean value and data points are assigned to the closest mean. Figure 1 show
a two-dimensional example. A longer explanation can found on https://en.wikipedia.org/wiki/
K-means_clustering.

+
4 + +
+ w7
+ oy e
3 A #+++t ; A
PR Y. T S +
T
2 + + 4 fﬁi J:“‘QJr#er + E—
+ +
o R @ e
T R s o - *
B
1 + + +*Lﬁ¢‘ﬁ+ﬁ #ﬁx P J‘#imr tots
B i g AL
L }h; ﬁﬁ@ QW%%%*% N
0 E HEL k= R
* i3 - St o
AT Ce v &
i *f' T 3*#%? o
-1 +oF T e St
I o+ + +f ety e
RSB S
#oEr T + +
-2 +++ ++ + +
e +
+y + N +
+
-6 -5 -4 -3 -2 -1 0 1 2 3

Figure 1: Example of k-Mean clustering in two-dimensions with k = 2. Means are at (0,0) and (—2,1)

A straight forward approach to k-means clustering is to split the algorithm into two functions.

— A classification function that assigns data points to given mean values.
— A means function that calculates new mean values based on a given classification.

The optimal position of the means can then be determined by alternatingly calling these two functions.
Once classifying the data points according to the present means and once determining new mean values
based on the assigned data points.

a) Use the Test Driven Development methodology to implement this algorithm. You can start with
simple manually entered test data, but should also include tests with randomly generated data.

b) Check that your code adheres to Python standards using pycodestyle:
python3 -m pycodestyle kmeans.py
Improve your code until the checker is happy .

¢) Scipy provides k-mean clustering in scipy.cluster.vq: https://docs.scipy.org/doc/scipy/
reference/cluster.vq.html. Once you are satisfied with your code, compare the results to the
Scipy implementation.

d) Profile your code in your profiler of choice and examine the results.


https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://docs.scipy.org/doc/scipy/reference/cluster.vq.html
https://docs.scipy.org/doc/scipy/reference/cluster.vq.html

	Writing a test suite [basic]
	Deceivingly simple function [intermediate]
	k-Means and numerical fuzzing [advanced]

