
Hardware Speedup, Scientific Programming with Python 2020 1

Department of Physics Scientific Programming with Python

Hardware Speedup June 25, 2020

Exercises

General comments

• Do not forget to activate the virtual environment:
source ~/school venv/bin/activate.

• Depending on your hardware you can increase the number of CPUs on your virtual
machine.

• It might be interesting to run the examples on the host-computer in case you have
a running python environment there.

Exercise 1: Optimizing arithmetic expressions

1. Use script poly.py to check how much time it takes to evaluate the next polyno-
mial:
y = .25*x**3 + .75*x**2 - 1.5*x - 2

with x in the range [-1, 1], and with 10 millions points.

• you can execute the script with different arguments. For example:
./poly.py --library numpy --expression-index 0.

• Set the --library argument to numexpr and take note of the speed-up versus
the “numpy” case. Why do you think the speed-up is so large?

If you get a “Permission denied” error you need to set execution permission to the
file with the following command: chmod +x poly.py

If your python command points to Python2, you need to change the first line (also
for the other scripts) to #!/usr/bin/env python3.

2. The expression
y = ((.25*x + .75)*x - 1.5)*x - 2

represents the same polynomial than the original one, but with some interesting
side-effects in efficiency. Repeat this computation (--expression-index 1) for
numpy and numexpr and get your own conclusions.

Roman Gredig June 25, 2020

Hardware Speedup, Scientific Programming with Python 2020 2

• Why do you think numpy is doing much more efficiently with this new ex-
pression?

• Why the speed-up in numexpr is not so high in comparison?

• Why numexpr continues to be faster than numpy?

3. The C program poly.c does the same computation than above, but in pure C.
Compile it like this:
gcc -O3 -o poly poly.c -lm

and execute it with ./poly

• Why do you think it is more efficient than the above approaches?

Exercise 2: Evaluating transcendental functions

4. Evaluate the expression sin(x)**2+cos(x)**2 in poly.py, a function that in-
cludes transcendental functions (--expression-index 3).

• Why the difference in time between NumPy and Numexpr is so small?

5. In poly.c, comment out expression 1) (around line 56) and uncomment expression
3) – the transcendental function). Don’t forget to compile again.

• Do this pure C approaches go faster than the Python-based ones?

• What would be needed to accelerate the computations?

Exercise 3: Using Numba

The goal of Numba is to compile arbitrarily complex Python code on-the-fly and exe-
cuting it for you. It is fast, although one should take in account the compile times.

6. Open poly-numba.py and look at how numba works.

• Run several expressions and determine which method is faster. What is the
compilation time for numba and how it compares with the execution time?

• Raise the amount of data points to 100 millions. What happens?

Exercise 4: Parallelism

7. Be sure that you are on a multi-processor machine use the
y = ((.25*x + .75)*x - 1.5)*x - 2

expression in poly-mp.py by using the argument --expression-index 1. Repeat
the computation for both numpy and numexpr for a different number of processes
(numpy) or threads (numexpr). Pass the desired number with --threads to the
script.

Roman Gredig June 25, 2020

Hardware Speedup, Scientific Programming with Python 2020 3

• How does the efficiency scale?

• Why do you think it scales that way?

• How is the performance compared with the pure C computation?

8. With the previous examples, compute the expression:
y = x

That is, do a simple copy of the ‘x’ vector. What is the performance that you are
seeing?

• How does it evolve when using different threads? Why it scales very similarly
than the polynomial evaluation?

• Could you have a guess at the memory bandwidth of this machine?

Roman Gredig June 25, 2020

