
Department of Physics Scientific Programming with Python

Data Structures June 24, 2020

Exercises Exercises 1 & 2 from
Stéfan van der Walt

Licence: CC-by-sa

Before you start:
– create a suitable directory for this exercise
– download the zipped material from http://www.physik.uzh.ch/~python/python/lecture_data/

Exercise 1: Exploring the NumPy Data Structure Further

This exercise has the goal to explore the NumPy data structure a bit further.
Generate two 2 × 2 arrays by

>>>>>> x = np.array([[1, 2], [3, 4]], order=’C’, dtype=np.uint8)

>>>>>> y = np.array([[1, 2], [3, 4]], order=’F’, dtype=np.uint8)

which give you a C- and a F-contiguous array, respectively.
Check the order of the elements and bytes in the data by looking at the string representing the data
behind the arrays with x.tobytes(’A’).

Now define these arrays as of data type uint32. Consider again the ordering of the bytes in the data.
Is the order of type Little (least significant byte first) oder Big (most significant byte first) Endian?
What happens if you switch to signed integers (i.e. int32)?
What happens if you switch the sign of the values in the input array?

Exercise 2: Fancy Indexing with NumPy

Create an n× n array and try to construct a one-dimensional array containing all the diagonal elements
with fancy indexing.

Create a 10 × 5 array with random numbers between 0 and 1. Construct the (one-dimensional) array
returning the values of the array closest to 0.66 for each row using fancy indexing. Do the same for the
columns.
Tip: Make use of np.abs and np.argmin, and check their documentation.

Predict and verify the shape of the arrays resulting from the following slicing operations:

>>>>>> x = np.empty((12, 7, 5))

>>>>>> idx0 = np.zeros((2, 9)).astype(int)

>>>>>> idx1 = np.zeros((2, 1)).astype(int)

>>>>>> idx2 = np.zeros((1, 1)).astype(int)

>>>>>> x[idx0, idx1, idx2]

Federica Lionetto June 24, 2020

http://www.physik.uzh.ch/~python/python/lecture_data/


Data Structures, Scientific Programming with Python 2020 2

Exercise 3: Random Samples in NumPy

Create an array of Gaussian distributed random variables xij (np.random.randn) with dimension 100 ×
1000 (i is the row index, j is the column index). The element xij should be distributed according to a
Gaussian distribution of mean µi and standard deviation σj , with µi = i · 10−2 and σj = j · 10−3.

In a second step, calculate the mean per column and the standard deviation per row. What do you
observe?

In a third step, calculate the average per row of all entries that are above 0.7.
Tip: Leverage np.where and you will likely have to use a for loop in this last step (Why?).

Exercise 4: Pandas meet Zebras

You find the position data of several zebras (Equus burchelli) in northern Botswana (Source: move-
bank.org) in the file ZebraBotswana.txt.
The data consists of the date and time of the measurement in unix format (i.e. seconds since 1970-1-1),
the longitude and latitude of the measured position (in degrees) and the number of the corresponding
zebra.

Use Pandas to read in the data (pd.read csv).

For each zebra, calculate the distance between two measurements (the distance of one degree in latitude
corresponds to about 111.3 km and in longitude at this latitude to about 104.6 km).

Calculate the distance covered by a zebra during each day and then calculate the daily average and its
standard deviation as well as the daily minimum and maximum.
Tip: Calculate the day of each measurement by dividing the Unix timestamp by 24 ·60 ·60 and transform
it into an integer. You can store it as an additional column in the data frame using the function map.
This allows you to group the measurements per day.

Exercise 5: Pandas & Financial Analysis

The file FinanceData.csv contains as time series the adjusted closing prices of the six highest-weighted
stocks (IBM, Goldman Sachs, 3M, Boeing, Chevron and United Technologies; VISA is not included due
to its initial public offering only in 2008) in the Dow Jones Industrial (DJI) index plus the index itself.
The first row is the date in unix format.

Use Pandas to read in the data (pd.read csv).

Calculate the daily increase or decrease of the adjusted closing prices in percent.

Calculate the mean and the standard deviation of these changes over the full time range.

Calculate the mean and the standard deviation of these changes on a rolling basis (e.g. based on the last
30 days).

Determine the correlation of the movements between the different time series over the full time range.

Determine the correlation of the movements between the different time series again on a rolling basis.

Exercise 6: Swiss Postal Codes

The file ch postal codes utf8.csv contains a list of all the postal codes in Switzerland with their co-
ordinates.

Use Pandas to read in the data (pd.read csv).

Which canton has the highest number of postal codes? And which city?

Federica Lionetto June 24, 2020



Data Structures, Scientific Programming with Python 2020 3

Calculate the distance between every pair of post codes. (The distance of one degree in latitude corre-
sponds to about 111.3 km and in longitude at this latitude to about 76.0 km; or you can leverage the
Haversine formula, cf. https://en.wikipedia.org/wiki/Haversine formula).
Tip: Leverage the broadcasting approach. You should be able to do it without any for loop. And be
careful: The values in the file are in degrees.

What is the maximum distance between two places? What is the minimum distance if you neglect zeros?

Try to determine the minimum and maximum distance of all the places within a canton or between two
different cantons without redoing the distance calculation.
Tip: Use fancy indexing.

Try to repeat the distance caluculation for France (fr postal codes utf8.csv). What does (likely)
happen?

Additional Exercise: Data Handling

Store the results obtained in Exercises 4, 5 or 6 in one of the discussed ways (Pickle, JSON, SQL database,
MongoDB).

Federica Lionetto June 24, 2020

https://en.wikipedia.org/wiki/Haversine_formula

