
Department of Physics

Need for Speed –
Python meets C/C++
Scientific Programming with Python

Christian Elsasser

Based partially on a talk by Stéfan van der Walt This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

June 25, 2020 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

Python is nice, but by construction slow . . .

[xkcd]

June 25, 2020 Python meets C/C++ Page 2

http://xkcd.com/353

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

June 25, 2020 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

June 25, 2020 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

June 25, 2020 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

June 25, 2020 Python meets C/C++ Page 3

Department of Physics

. . . why not therefore interfacing it with C/C++
(or something similar, e.g. if you don’t feel too young to use Fortran)

Python

. . .

Fortran

C/C++

Easy to use/Flexibility

Speed/Complexity

1. Performance improvement
→ Cython

2. Interfaces
→ SWIG
→ boost::python
→ ctypes

0. Introduction

Agenda

June 25, 2020 Python meets C/C++ Page 3

Department of Physics

C++ on one Slide www.cplusplus.com and www.learncpp.com

I C++ is an (if not the) object-oriented programming language (like Python)
I including inheritance (like Python does in a slightly different way)
I . . . operator overloading (like Python)
I It has a rich variety of libraries (like Python)
I It can raise exceptions (like Python)
I It requires declaration of variables (not like Python)
I It is (usually) a compiled language! (not like Python)
⇒ C++ and Python share a lot of similarities!

C is just the non-object-oriented version of C++ (minus some other missing features, e.g.
exceptions)

June 25, 2020 Python meets C/C++ Page 4

http://www.cplusplus.com
http://www.learncpp.com

Department of Physics

A Few Words of Warning

Bad code stays bad code! – Better clean
it up than trying to overpaint it!

Do not expect miracles! – You have to
master two languages!

June 25, 2020 Python meets C/C++ Page 5

Department of Physics

C keeps Python running . . .

I CPython is the standard implementation of the Python interpreter written in C.
I The Python C API (application programming interface) allows to build C libraries that can be

imported into Python (https://docs.python.org/3/c-api/) . . .
I . . . and looks like this:

Pure Python

>>>>>> a = [1,2,3,4,5,6,7,8]
>>>>>> sum(a)
36

June 25, 2020 Python meets C/C++ Page 6

https://docs.python.org/3/c-api/

Department of Physics

. . . but takes a lot of the fun out of Python
C++ implementation of sum of a list

sum_list(PyObject *list) {
int i, n;
long total = 0;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */

for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

June 25, 2020 Python meets C/C++ Page 7

Department of Physics

C/C++ in Python: Not a New Thing

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD;
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject;

⇒ Several Python “standard” libraries are using C/C++ to speed things up

June 25, 2020 Python meets C/C++ Page 8

Department of Physics

Cython – An easy way to get C-enhanced compiled Python code
(http://cython.org)

I Hybrid programming language combining Python and an interface for using C/C++ routines.
I . . . or a static compiler for Python allowing to write C/C++ extensions for Python and heavily

optimising this code.
I It is a successor of the Pyrex language. (The reason for the .pyx file extension)

⇒ Every valid Python statement is also valid when using cython.

⇒ Code needs to be compiled→ Time!
I Translates your “C-enhanced” Python code into C/C++ code using the C API

Cython (v0.29.15) understands Python 3, and also most of the features of C++11

June 25, 2020 Python meets C/C++ Page 9

http://cython.org

Department of Physics

Requirements: Cython package and a C compiler

I cython
The latest version can be downloaded from http://cython.org.

I C/C++ compiler, e.g. gcc/g++/clang (or for Windows: mingw)

Linux: usually already installed
(Ubuntu/Debian: sudo apt-get install build-essential)

MacOS X: XCode command line tools

Windows: Download of MinGW from http:// mingw.org and install it

June 25, 2020 Python meets C/C++ Page 10

http://cython.org
http:// mingw.org

Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Python

def fib(n):

a,b = 1,1
for i in range(n):
a,b = a+b,a

return a

June 25, 2020 Python meets C/C++ Page 11

Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):
a,b = a+b,a

return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

June 25, 2020 Python meets C/C++ Page 11

Department of Physics

Benchmark One: Fibonacci series

Fibonacci function - Cython

def fib(int n):
cdef int i,a,b
a,b= 1,1
for i in range(n):
a,b = a+b,a

return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

I A few (simple) modifications can easily change the CPU time by a factor of O(100)

June 25, 2020 Python meets C/C++ Page 11

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .o .so

lib

cython ‘gcc‘ ‘gcc‘

Shared object (<name>.so) can be imported into
Python with import name

1. Compile Cython code to C/C++ code
cython/cython3 -3 <name>.pyx

2. Create object files
gcc -O2 -fPIC
-I<path_to_python_include> -c
<name>.c -o <name>.o

3. Compile shared object (i.e. library)
gcc [options]
-L<path_to_python_library>
<name>.o -o <name>.so

I If using C++ code, cython needs the
option -+ and gcc → g++

I options are for MacOS X -bundle
-undefined dynamic_lookup and
for Debian -shared

June 25, 2020 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .o .so

lib

cython ‘gcc‘ ‘gcc‘

Shared object (<name>.so) can be imported into
Python with import name

1. Compile Cython code to C/C++ code
cython/cython3 -3 <name>.pyx

2. Create object files
gcc -O2 -fPIC
-I<path_to_python_include> -c
<name>.c -o <name>.o

3. Compile shared object (i.e. library)
gcc [options]
-L<path_to_python_library>
<name>.o -o <name>.so

I If using C++ code, cython needs the
option -+ and gcc → g++

I options are for MacOS X -bundle
-undefined dynamic_lookup and
for Debian -shared

June 25, 2020 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .o .so

lib

cython ‘gcc‘ ‘gcc‘

Shared object (<name>.so) can be imported into
Python with import name

1. Compile Cython code to C/C++ code
cython/cython3 -3 <name>.pyx

2. Create object files
gcc -O2 -fPIC
-I<path_to_python_include> -c
<name>.c -o <name>.o

3. Compile shared object (i.e. library)
gcc [options]
-L<path_to_python_library>
<name>.o -o <name>.so

I If using C++ code, cython needs the
option -+ and gcc → g++

I options are for MacOS X -bundle
-undefined dynamic_lookup and
for Debian -shared

June 25, 2020 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .o .so

lib

cython ‘gcc‘ ‘gcc‘

Shared object (<name>.so) can be imported into
Python with import name

1. Compile Cython code to C/C++ code
cython/cython3 -3 <name>.pyx

2. Create object files
gcc -O2 -fPIC
-I<path_to_python_include> -c
<name>.c -o <name>.o

3. Compile shared object (i.e. library)
gcc [options]
-L<path_to_python_library>
<name>.o -o <name>.so

I If using C++ code, cython needs the
option -+ and gcc → g++

I options are for MacOS X -bundle
-undefined dynamic_lookup and
for Debian -shared

June 25, 2020 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)

.pyx .c
.cpp .o .so

lib

cython ‘gcc‘ ‘gcc‘

Shared object (<name>.so) can be imported into
Python with import name

1. Compile Cython code to C/C++ code
cython/cython3 -3 <name>.pyx

2. Create object files
gcc -O2 -fPIC
-I<path_to_python_include> -c
<name>.c -o <name>.o

3. Compile shared object (i.e. library)
gcc [options]
-L<path_to_python_library>
<name>.o -o <name>.so

I If using C++ code, cython needs the
option -+ and gcc → g++

I options are for MacOS X -bundle
-undefined dynamic_lookup and
for Debian -shared

June 25, 2020 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The easy way)
Support via the distutils (distribution utilities) package in building and installing Python modules
⇒ applicable for cython

Cython setup script

from distutils.core import setup
from Cython.Build import cythonize

setup(ext_modules = cythonize([<name of .pxy files>],
language = "c++" #optional

))

Command python setup.py build_ext --inplace creates for each .pyx file a .c/.cpp file, compiles
it to an executable (in the build directory of the corresponding OS/architecture/Python version)
and compiles a .so file (or a .pxd if you are using Windows)

Further options for cythonize via help explorable
June 25, 2020 Python meets C/C++ Page 13

Department of Physics

When to use which way
1. Cython extension in ipython/Jupyter
notebook

I You want to investigate where are some
room for improvement with cython

I Testing of some implementations
I Rather small code snippets
I No complicated dependencies on

external C/C++ libraries
I Modules are not available outside (in

principle)

2. Compiling via setup script (or by hand)

I Creating more complex modules
I (extensive) linkage to external C/C++

libraries
I Usage of additional options (e.g. for

optimisation)

June 25, 2020 Python meets C/C++ Page 14

Department of Physics

How Performant is My Code?
cython -3 -a/--annotate <name>.pyx→ additional HTML file

I bad performance→ yellow marking
I allows to investigate code and to learn about performance tuning

I Not every yellow part can be improved!
June 25, 2020 Python meets C/C++ Page 15

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integration - version 1

from math import sin,exp

def f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Python layer (expensive)

integrate(a,b,N)
.
.
f(x)
.
.

C layer (cheap)

.
_pyx_integrate(a,b,N)
for (i=0; i<N; i++)
.
_pyx_f(x)
sum updated

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integration - version 2

from math import sin,exp

cdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integration - version 3

from math import sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integration - version 4

from libc.math cimport sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):

s += f(a+(i+0.5)*dx)
return s*dx

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

Benchmark Two: Numerical Integration
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

I Return values of function can be specified via the key word cdef
I cpdef⇒ function also transparent to Python itself (no performance penalty)

I C/C++ library can be imported via from libc/libcpp.<module> cimport <name> (see
later)

I Using C++ functions can lead to a huge speed-up
I Try to do as much as you can in the C-layer

I Already huge speed-up when leveraging numpy and its vectorisation

June 25, 2020 Python meets C/C++ Page 16

Department of Physics

You are here!

June 25, 2020 Python meets C/C++ Page 17

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

Object holders with specific memory access structure, e.g.
I std::vector allows to access any element
I std::list only allows to access elements via iteration
I std::map represents an associative container with a key and a mapped values

June 25, 2020 Python meets C/C++ Page 18

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

. . . and Cython knows how to treat them!

Python → C++ → Python
iterable → std::vector → list
iterable → std::list → list
iterable → std::set → set

iterable (len 2) → std::pair → tuple (len 2)
dict → std::map → dict

bytes → std::string → bytes

June 25, 2020 Python meets C/C++ Page 18

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library containers (e.g. std::vector,
std::map, etc.)

A few remarks!
I iterators (e.g. it) can be used⇒ dereferencing with dereference(it) and

incrementing/decrementing with preincrement (i.e. ++it), postincrement (i.e. it++),
predecrement (i.e. --it) and postdecrement (i.e. it--) from cython.operator

I Be careful with performance! ⇒ performance lost due to shuffling of data
I More indepth information can be found directly in the corresponding sections of the cython

code https://github.com/cython/cython/tree/master/Cython/Includes/libcpp
I C++11 containters (like std::unordered_map) are partially implemented

June 25, 2020 Python meets C/C++ Page 18

https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

Department of Physics

Exceptions/Errors
In terms of exception and error handling three different cases need to be considered:

I Raising of a Python error in cython code⇒ return values make it impossible to raise
properly Python errors (Warning message, but continuing)

I Handling of error codes from pure C functions
I Raising of a C++ exception in C++ code used in cython⇒ C++ exception terminates – if

not caught – program

June 25, 2020 Python meets C/C++ Page 19

Department of Physics

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

June 25, 2020 Python meets C/C++ Page 20

Department of Physics

Errors in Python

Python Error in Cython - untreated

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning (and worse gives an ambigious return value)

Python Error in Cython - treated

cpdef int raiseError() except *:
raise RuntimeError("A problem")
return 1

⇒ Propagates the RuntimeError

June 25, 2020 Python meets C/C++ Page 20

Department of Physics

Errors in C
C does not know exceptions like Python or C++. If errors should be caught, it is usually done via
dedicated return values of functions which cannot appear in a regular function call.

Use the except statement to tell cython about this value

Handling a C Error

cpdef int raiseException() except -1:
return -1

June 25, 2020 Python meets C/C++ Page 21

Department of Physics

Exceptions in C++

[xkcd]

In cython this is also true for C++ exceptions!

Cython is not able to deal with C++ exceptions in a try’n’except clause!

⇒ But caption in cython and translation to Python exceptions/errors is possible!

June 25, 2020 Python meets C/C++ Page 22

Department of Physics

Exceptions in C++
. . . and how to tackle them!

I cdef <C++ function>() except +
⇒ translates a C++ exception into a Python
error according to the right-hand scheme

I cdef <C++ function>() except
+<Python Error> e.g. MemoryError⇒
translates every thrown C++ exception into
a MemoryError

I cdef <C++ function>() except
+<function raising Python error>⇒
runs the indicated function if the C++
function throws any exception. If <function
raising Python error> does not raise an
error, a RuntimeError will be raised.

C++ → Python
bad_alloc → MemoryError
bad_cast → TypeError

domain_error → ValueError
invalid_argument → ValueError
ios_base::failure → IOError

out_of_range → IndexError
overflow_error → OverflowError

range_error → ArithmeticError
underflow_error → ArithmeticError

(all others) → RuntimeError

June 25, 2020 Python meets C/C++ Page 22

Department of Physics

Classes
Classes are a common feature of Python and C++

There are two aspects when dealing with cython:
I Defining classes containing C++ code in cython
I C++ classes integrated into Python

June 25, 2020 Python meets C/C++ Page 23

Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Defining classes in Cython

cdef class Integrand:
cpdef double evaluate(self,double x) except *:

raise NotImplementedError()

cdef class SinExpFunction(Integrand):
cpdef double evaluate(self,double x):

return sin(x)*exp(-x)

def integrate(Integrand f,double a,double b,int N):
...
s += f.evaluate(a+(i+0.5)*dx)

Cython does not know @abstractmethod from the module abc!
June 25, 2020 Python meets C/C++ Page 24

Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Adding classes in Python

class Poly(Integrand):
def evaluate(self,double x):

return x*x-3*x
integrate(Poly(),0.0,2.0,1000)

⇒ Speed lost with respect to definition in cython, but still faster than a pure Python
implementation

June 25, 2020 Python meets C/C++ Page 24

Department of Physics

Integration of C++ Classes in Cython – Possible but cumbersome
Starting point: .cpp/.h file for class Rectangle defined in a namespace shapes

1. Expose it to Cython by delaring the class structure and method signatures

2. Integrating it into Cython either via direct usage or by defining a wrapper class

Exposing C++ classes in Cython

distutils: language = c++
distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, y0, x1, y1
int getLength()
int getHeight()
int getArea()
void move(int, int)

June 25, 2020 Python meets C/C++ Page 25

Department of Physics

Automatic Wrappers
. . . since not everybody likes to write lines of error-prone code

I SWIG
I boost::python
I ctypes
I . . .

Goal: creating compilable C/C++ code
based on the Python C API

June 25, 2020 Python meets C/C++ Page 26

Department of Physics

SWIG
SWIG: Simplified Wrapper and Interface Generator

I Generic Wrapper for C/C++ to script-like languages
I R
I Perl
I Ruby
I Tcl
I PHP5
I Java
I . . . and Python

I Pretty old – created in 1995 by Dave Beazley
I Current version is 4.0.2

June 25, 2020 Python meets C/C++ Page 27

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Create object files based on output
from the wrapper plus native C/C++
code

3. Compile shared object (i.e. library)
Normally step 2 and 3 can be
combined with via Distutils setup.py
python setup.py build_ext
--inplace

June 25, 2020 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Create object files based on output
from the wrapper plus native C/C++
code

3. Compile shared object (i.e. library)
Normally step 2 and 3 can be
combined with via Distutils setup.py
python setup.py build_ext
--inplace

June 25, 2020 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Create object files based on output
from the wrapper plus native C/C++
code

3. Compile shared object (i.e. library)
Normally step 2 and 3 can be
combined with via Distutils setup.py
python setup.py build_ext
--inplace

June 25, 2020 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Create object files based on output
from the wrapper plus native C/C++
code

3. Compile shared object (i.e. library)
Normally step 2 and 3 can be
combined with via Distutils setup.py
python setup.py build_ext
--inplace

June 25, 2020 Python meets C/C++ Page 28

Department of Physics

SWIG – in a Nutshell

...h
.c

.i

.c
.cxx
.cpp

.py

.o .so

lib

swig ‘gcc‘ ‘gcc‘

Moduel (<name>.py) can be imported into Python
with import name ⇒ Shared object needs different
name

1. Create python wrapper and
necessary C files
swig -c++ -python <name>.i

2. Create object files based on output
from the wrapper plus native C/C++
code

3. Compile shared object (i.e. library)
Normally step 2 and 3 can be
combined with via Distutils setup.py
python setup.py build_ext
--inplace

June 25, 2020 Python meets C/C++ Page 28

Department of Physics

SWIG – The interface file
Main configuration with interface (.i) files

I tells which (header) file(s) contains the
C/C++ code to wrap

I defines some special data types
(e.g. std::vector<...>)

I handles some additional configuration
(e.g. exception/error translation)

Interface file

%module geom // name of the module
...
// things swig should know about
%include "Shape.h"
%include "Rectangle.h"

// things that should be put into the
// header of the wrapper file (.c/.cxx)
%{
include "Shape.h"
include "Rectangle.h"
%}

June 25, 2020 Python meets C/C++ Page 29

Department of Physics

SWIG – The Distutils file

Distutils setup script (setup.py)

from distutils.core import setup, Extension
extension_mod = Extension("_<name>" , # Use _ to distinguish to final module name

["<name_wrap>.cxx",
"<source1>.cpp",
"<source2>.cpp","..."],

language='c++')
setup(name = "_<name>", ext_modules=[extension_mod])

I To be build extension needs a different name than the module set up by switch⇒ Avoid
name conflicts

I Language option only for C++
I python setup.py build_ext --inplace

June 25, 2020 Python meets C/C++ Page 30

Department of Physics

A Few Remarks about SWIG

I SWIG ≈ performance loss with respect to cython
I If SWIG works: ,
I If it does not: /
I . . . and therefore you can lose a lot of time with special problems
I It is not always optimal to expose the whole class to Python

June 25, 2020 Python meets C/C++ Page 31

Department of Physics

Conclusion

I Interfacing Python with C/C++ is – or
better – can be a way to create powerful
code

I cython and SWIG are two nice tools to
do so

I . . . but always make the interfacing
maintainable/useful/etc. i.e. not a British
train door

I And it’s all about finding the sweet spot!

June 25, 2020 Python meets C/C++ Page 32

Department of Physics

The Sweet Spot!
Time spent

Code executed per compilation

Compilation

Pure code optimal Compiled code optimal

Python

Python + C/C++

June 25, 2020 Python meets C/C++ Page 33

Department of Physics

The End!

[xkcd]June 25, 2020 Python meets C/C++ Page 34

Department of Physics

References

1. Stéfan van der Walt, Speeding up scientific Python code using Cython, Advanced Scientific
Programming in Python, 2013 (Zurich) & 2014 (Split)

2. Stefan Behnel et al., Cython tutorial, Proceedings of the 8th Python in Science Conference (SciPy 2009)
⇒ based on older cython version, but the main reference of cython

3. Dave Beazley, Swig Master Class, PyCon’2008
4. http://docs.cython.org/src/tutorial/

5. http://www.swig.org

June 25, 2020 Python meets C/C++ Page 35

http://docs.cython.org/src/tutorial/
http://www.swig.org

Department of Physics

Backup

Department of Physics

Fortran meets Python
The f2py compiler (http://docs.scipy.org/doc/numpy-dev/f2py/) offers – in a similar way as
cython – the possibility to generate extension modules for Python from Fortran code.

f2py -c -m <module name> <fortran file>.f/.f90 -I<path to python header file> builds from the code
in <fortran file>.f/.f90 a importable module (i.e. shared object) <module name>.so

Fortran modules and subroutines are exposed to Python on time of the import of the built module.

The compilation can also be split into a first step generating a signature file, which is in a second
step compiled into the extension module

June 25, 2020 Python meets C/C++ Page 37

http://docs.scipy.org/doc/numpy-dev/f2py/

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 1

cdef extern from 'except_cy.h'
cdef void raiseException() except +

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ OK as raiseException() throws a std::exception→ RuntimeError

June 25, 2020 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 2

cdef extern from 'except_cy.h'
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ Not OK as raiseException() throws a std::exception which is explicitly transformed into a
MemoryError

June 25, 2020 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 3

cdef extern from 'except_cy.h'
cdef void raiseBadAlloc() except +

def tryIt():
try:

raiseBadAlloc()
except RuntimeError as e:

print(e)

⇒ Not OK as raiseBadAlloc() throws a std::bad_alloc which is transformed into a
MemoryError

June 25, 2020 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 4

cdef extern from 'except_cy.h'
cdef void raiseBadAlloc() except +

def tryIt():
try:

raiseBadAlloc()
except MemoryError as e:

print(e)

⇒ OK as raiseBadAlloc() throws a std::bad_alloc which is transformed into a MemoryError

June 25, 2020 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 5

cdef void raise_py_error() except *:
raise MemoryError("Problem")

cdef extern from 'except_cy.h':
cdef void raiseBadAlloc() except +raise_py_error

def tryIt():
try:

raiseBadAlloc()
except MemoryError as e:

print(e)

⇒ OK as raise_py_error() throws an error
June 25, 2020 Python meets C/C++ Page 38

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc() defined in
except_cy.h

Exception Example 6

cdef void raise_py_error() except *:
pass

cdef extern from 'except_cy.h':
cdef void raiseBadAlloc() except +raise_py_error

def tryIt():
try:

raiseBadAlloc()
except MemoryError as e:

print(e)

⇒ Not OK as no error is thrown by raise_py_error()
June 25, 2020 Python meets C/C++ Page 38

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.h - C++ header file

namespace shapes {
class Rectangle {
public:

int x0, y0, x1, y1;
Rectangle(int x0, int y0, int x1, int y1);
~Rectangle(); // destructor
int getLength();
int getHeight();
int getArea();
void move(int dx, int dy);

};
}

June 25, 2020 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.cpp - C++ implementation file

include "Rectangle.h"
include <iostream>
using namespace shapes;
Rectangle::Rectangle(int X0, int Y0, int X1, int Y1) {

x0 = X0;
y0 = Y0;
x1 = X1;
y1 = Y1;
std::cout << "Here I am" << std::endl;}

Rectangle::~Rectangle() {
std::cout << "Byebye" << std::endl;}

...

June 25, 2020 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
Now exposing it to Cython . . .

rect.pyx - expose interface in Cython

distutils: language = c++
distutils: sources = Rectangle.cpp
cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Rectangle:
Rectangle(int, int, int, int) except +
int x0, y0, x1, y1
int getLength()
int getHeight()
int getArea()
void move(int, int)

June 25, 2020 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
. . . and using it! Directly in Cython . . .

rect.pyx - inclusion in Cython

def tryIt():
cdef Rectangle* r
try:

r = new Rectangle(1,2,3,4)
print("My length is {0:f}".format(r.getLength()))
print("My first x-coordinate is {0:f}".format(r.x0))

finally:
del r

June 25, 2020 Python meets C/C++ Page 39

Department of Physics

Integration of C++ Classes
. . . and using it! . . . or to create class in Cython accessible in Python

rect.pyx - create wrapping class in Cython

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)
def __dealloc__(self):

del self.thisptr
def getLength(self):

return self.thisptr.getLength()
def getHeight(self):

return self.thisptr.getHeight()
...

June 25, 2020 Python meets C/C++ Page 39

Department of Physics

Special features: STL Stuff with SWIG

I Dedicated interface files need to be integrated when running SWIG
I . . . and templates for each containers + each content need to be defined

SWIG interface file with vectors and strings

...
%include "std_vector.i"
%include "std_string.i"
...
%template(dVector) std::vector<double>;
%template(rectVector) std::vector<Rectangle*>;
...

June 25, 2020 Python meets C/C++ Page 40

Department of Physics

Special features: Exceptions with SWIG
SWIG interface file with exceptions

...
%include "exception.i"
...
%exceptionclass ShapeError;
%exception *::whine {

try {
$action

} catch(ShapeError & e) {
ShapeError *ecopy = new ShapeError(e);
PyObject *err = SWIG_NewPointerObj(ecopy, SWIGTYPE_p_ShapeError, 1);
PyErr_SetObject(SWIG_Python_ExceptionType(SWIGTYPE_p_ShapeError), err);
SWIG_fail;

}
}

June 25, 2020 Python meets C/C++ Page 41

Department of Physics

Special features: Overloading
Cython deals the usual way with overloaded methods in C++:

Overloading that works (since not creating a Python class) – does work

cdef extern from "Rectangle.h" namespace "shapes":
...
void move(int, int)
void move(int)

. . . but it cannot happen in a Python wrapper class:
Need to avoid overloading (since creating a Python class) – does not work

cdef class PyRectangle:
...
def move(self,dx,dy):

return self.thisptr.move(dx,dy)
def move(self,d):

return self.thisptr.move(d)

June 25, 2020 Python meets C/C++ Page 42

Department of Physics

Special features: Inheritance
As in Python C++ classes can inherit from parent classes including overriding of methods

Inheritiance in C++ header file

class Shape {
public:

...
void virtual printInfo(); // Prints "Shape"

};
class Rectangle : public Shape {
public:

...
void printInfo(); // Prints "Rectangle"

};

June 25, 2020 Python meets C/C++ Page 43

Department of Physics

Special features: Inheritance
Cython can also deal with this feature, but there are two points to keep in mind:
1. If parent class is also exposed to cython, no redefinition of overridden methods is required
(and also allow→ mis-interpreted as overloading)

Exposing inheritance in Cython

cdef extern from "Rectangle.h" namespace "shapes":
cdef cppclass Shape:

Shape() except +
void printInfo()

cdef cppclass Rectangle(Shape):
Rectangle(int, int, int, int) except +
...
void printInfo() # causes problems
...

June 25, 2020 Python meets C/C++ Page 43

Department of Physics

Special features: Inheritance
2. The inheritance can only be transported into wrapper classes if child classes have the same
set of methods as the mother class

Wrapping inheritance in Cython

cdef class PyObject:
cdef Object* thisptr
def __cinit__(self):

self.thisptr = new Object()
def __dealloc__(self):

del self.thisptr
def printInfo(self):

self.thisptr.printInfo()
cdef class PyRectangle(PyObject):

def __cinit__(self,int x0,int y0,int x1,int y1):
self.thisptr = new Rectangle(x0,y0,x1,y1)

June 25, 2020 Python meets C/C++ Page 43

Department of Physics

Special features: Operator Overloading
C++ as well as Python offers the potential to define operators for objects.

Example with Rectangles:

A B

A · B

Multiplication of rectangles: Create a new rectangle acting as a bounding boox

June 25, 2020 Python meets C/C++ Page 44

Department of Physics

Special features: Operator Overloading
Wrapping operator overloading in C++

Rectangle operator*(Rectangle& rhs){
double x0_n = min(min(x0,x1),min(rhs.x0,rhs.x1)),x1_n = max(max(x0,x1),max(rhs.x0,rhs.x1));
double y0_n = min(min(y0,y1),min(rhs.y0,rhs.y1)),y1_n = max(max(y0,y1),max(rhs.y0,rhs.y1));
return Rectangle(x0_n,y0_n,x1_n,y1_n);

};

Wrapping operator overloading in Cython

to expose it to Cython
Rectangle operator*(Rectangle)

in the wrapper class
def __mul__(PyRectangle lhs,PyRectangle rhs):

res = PyRectangle(0,0,0,0)
res.thisptr[0] = lhs.thisptr[0]*rhs.thisptr[0] # ptr deref
return res

June 25, 2020 Python meets C/C++ Page 44

Department of Physics

Arrays
Arrays in cython are usually treated via typed memoryviews (e.g. double[:,:] means a
two-dimensional array of doubles, i.e. compatible with e.g. np.ones((3,4)))

Further you can specify which is the fastest changing index by :1, e.g.
I double[::1,:,:] is a F-contiguous three-dimensional array
I double[:,:,::1] is a C-contiguous three-dimensional array
I double[:,::1,:] is neither F- nor C-contiguous

For example a variable double[:,::1] a has as NumPy arrays variables like shape and size
and the elements can be accessed by a[i,j]

But be aware: NumPy is already heavily optimised, so do not to reinvent the wheel!

June 25, 2020 Python meets C/C++ Page 45

	Backup

