
Department of Physics

Object-Oriented Programming
Scientific Programming with Python

Andreas Weiden

Based on talks by Niko Wilbert and Roman Gredig This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

24/06/2019 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

Outline

What is OOP?

Fundamental Principles of OOP

Specialities in Python

Science Examples

Design Patterns

24/06/2019 Page 2

Department of Physics

Setting the scene

Object-oriented programming is a programming paradigm.

I Imperative programming
I Object-oriented
I Procedural

I Declarative programming
I Functional
I Logic

24/06/2019 Page 3

Department of Physics

What is Object-Oriented Programming?

Aim to segment the program into instances of different classes of
objects:

I Instance variables to describe the state of the object
I Methods to model the behaviour of the object

The definition of a class can be considered like a blue print. The
program will create instances of classes and execute methods of
these instances.

24/06/2019 Page 4

Department of Physics

Why might OOP be a good idea?

DRY (Don’t repeat yourself):

OOP means to create the functionality of
classes once with the possibility to use
them repeatedly in different programms.
In addition inheritance in OOP allows us to
easily create new classes by extending
existing classes (see below).

KIS (Keep it simple):

The OOP paradigm allows to split the
functionality of programs into the basic
building blocks and the algorithm
invoking them. Thus it creates a natural
structure within your code.

At one point the problem to solve becomes so complicated that a single sequence of program
instructions is not sufficient to effectively maintain the code.

24/06/2019 Page 5

Department of Physics

Example of a class

class Dog:
def __init__(self , color="brown"):

self.color = color

def make_sound(self):
print("Wuff!")

create an instance ’snoopy ’ of the class Dog
snoopy = Dog()

first argument (self) is bound
to this Dog instance
snoopy.make_sound ()

change snowy ’s color
snoopy.color = "yellow"

I Started with class keyword.
I Methods defined as functions in class

scope with at least one argument
(usually called self).

I Special method __init__ called when
a new instance is created.

I Always define your data attributes first
in __init__.

24/06/2019 Page 6

Department of Physics

Fundamental Principles of OOP (I)

Encapsulation
I Only what is necessary is exposed

(public interface) to the outside.
I Implementation details are hidden to

provide abstraction. Abstraction should
not leak implementation details.

I Abstraction allows to break up a large
problem into understandable parts.

In Python:
I No explicit declaration of

variables/functions as private or public.
I Usually parts supposed to be private

start with an underscore _.
I Python works with documentation and

conventions instead of enforcement.

24/06/2019 Page 7

Department of Physics

Example of Encapsulation
class Dog:

def __init__(self , color="brown"):
self.color = color
self._mood = 5

def _change_mood(self , change):
self._mood += change
self.make_sound ()

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

def pat(self):
self._change_mood (1)

def beat(self):
self._change_mood (-2)

I The author of the class Dog
wants you to pat and beat the
dog to change its mood.

I Do not use the _mood variable
or the _change_mood method
directly.

24/06/2019 Page 8

Department of Physics

Fundamental Principles of OOP (II)

Inheritance
I Define new classes as subclasses that

are derived from / inherit / extend a
parent class.

I Override parts with specialized
behavior and extend it with additional
functionality.

In Python:
I Inherit from one or multiple classes

(latter one not recommended!)
I Invocation of parent methods with

super function.
I All classes are derived from object,

even if this is not specified explicitly.

24/06/2019 Page 9

Department of Physics

Example of Inheritance
class Mammal:

def __init__(self , color="grey"):
self.color = color
self._mood = 5

def _change_mood(self , change):
self._mood += change
self.make_sound ()

def make_sound(self):
raise NotImplementedError

def pat(self):
self._change_mood (1)

def beat(self):
self._change_mood (-2)

from mammal import Mammal

class Dog(Mammal):
def __init__(self , color="brown"):

super (). __init__(color)

def make_sound(self):
if self._mood < 0:

print("Grrrr!")
else:

print("Wuff!")

I super().__init__(color) is the call
to the parent constructor.

I super allows also to explicitly access
methods of the parent class.

I This is usually done when extending a
method of the parent class.

24/06/2019 Page 10

Department of Physics

Fundamental Principles of OOP (III)

Polymorphism
I Different subclasses can be treated

like the parent class, but execute their
specialized behavior.

I Example: When we let a mammal
make a sound that is an instance of the
dog class, then we get a barking sound.

In Python:
I Python is a dynamically typed

language, which means that the type
(class) of a variable is only known when
the code runs.

I Duck Typing: No need to know the
class of an object if it provides the
required methods: “When I see a bird
that walks like a duck and swims like a
duck and quacks like a duck, I call that
bird a duck.”

I Type checking can be performed via the
isinstance function, but generally
prefer duck typing and polymorphism.

24/06/2019 Page 11

Department of Physics

Example of Polymorphism

from animals import Dog , Cat , Bear

def caress(mammal , number_of_pats):
if isinstance(mammal , Bear):

raise TypeError("Bad Idea!")
for _ in range(number_of_pats):

mammal.pat()

d, c, b = Dog(), Cat(), Bear()
caress(d, 3) # "Wuff!" (3x)
caress(c, 3) # "Purr!" (3x)
caress(b, 3) # raises TypeError

I caress would work for all
objects having a method pat,
not just mammals.

I isinstance(mammal, Bear)
checks if mammal is a bear.

I Dynamic typing makes proper
function overloading
impossible!

24/06/2019 Page 12

Department of Physics

Python Specialities – Magic Methods

class Dog:
def __init__(self , color="brown"):

self.color = color
self._mood = 5

def __repr__(self):
return f"This is a {self.color} dog"

snowy = Dog("white")
print(snowy) # This is a white dog

I Magic methods (full list here)
start and end with two
underscores (“dunder”).

I They customise standard
Python behavior (e.g. string
representation or operator
definition).

24/06/2019 Page 13

https://docs.python.org/3/reference/datamodel.html#special-method-names

Department of Physics

Python Specialities – Property
class Dog:

def __init__(self , color="brown"):
self.color = color
self._mood = 5

def _get_mood(self):
if self._mood < 0:

return "angry"
return "happy"

def _set_mood(self , value):
if not -10 <= value <= 10:

raise ValueError("Bad range!")
self._mood = value

mood = property(_get_mood , _set_mood)

snowy = Dog("white")
print("Snowy is", snowy.mood) # Snowy is happy
snowy.mood = -3
print("Snowy is", snowy.mood) # Snowy is angry

I property has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

I Access calculated values as if they
were stored data attributes.

I Define read-only “data attributes”.
I Check if value assigned to “data

attribute” fullfills conditions.
I Can also be used as a Python

decorator.

24/06/2019 Page 14

Department of Physics

Python Specialities – Property
class Dog:

def __init__(self , color="brown"):
self.color = color
self._mood = 5

@property
def mood(self):

if self._mood < 0:
return "angry"

return "happy"

@mood.setter
def mood(self , value):

if not -10 <= value <= 10:
raise ValueError("Bad range!")

self._mood = value

create an instance ’snowy’ of the class Dog
snowy = Dog("white")
print("Snowy is", snowy.mood)
snowy.mood = 100

I property has upto four arguments:
1. Getter
2. Setter
3. Deleter
4. Documentation string

I Access calculated values as if they
were stored data attributes.

I Define read-only “data attributes”.
I Check if value assigned to “data

attribute” fulfils conditions.
I Can also be used as a Python

decorator.

24/06/2019 Page 15

Department of Physics

Python Specialities – Classmethods

class Dog:
def __init__(self , name , color="brown"):

self.name = name
self.color = color
self._mood = 5

@classmethod
def from_string(cls , s):

name , *color = s.split(",")
if color:

return cls(name , color)
return cls(name)

snowy = Dog.from_string("snowy ,white")

I A classmethod takes as its first
argument a class instead of an instance
of the class. It is therefore called cls
instead of self.

I The method should return an object of
the class.

I This allows you to write multiple
constructors for a class, e.g.:

I The default __init__ constructor.
I One constructor from a serialized

string.
I One that reads it from a database or

file.
I . . .

24/06/2019 Page 16

Department of Physics

Python Specialities – Class attributes

class Dog:
legs = 4
all_dogs = set()

def __init__(self , name , color="brown"):
self.name = name
self.color = color
self._mood = 5
Dog.all_dogs.add(self)

def __repr__(self):
return self.name

snowy = Dog("snowy", "white")
snowy.legs = 3
print(Dog.legs , snowy.legs) # 4 3
print(Dog.all_dogs) # {snowy}

I A class can also have attributes, not
only an instance.

I All instances have (at initialization) the
same attribute as the class.

I If you change the attribute, only the
attribute of the instance changes.

I Beware if the class attribute is
mutable! In this case inplace
operations change the class attribute,
which is visible in all instances. This
can be a good or bad thing.

24/06/2019 Page 17

Department of Physics

Advanced OOP Techniques

There many advanced techniques that we didn’t cover:
I Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to

understand the Method Resolution Order (MRO) to understand super.
I Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods.
I Abstract Base Classes: Enforce that derived classes implement particular methods from the

base class.
I Metaclasses: (derived from type), their instances are classes.

I Great way to dig yourself a hole when you think you are clever.
I Try to avoid these, in most cases you would regret it. (KIS)

24/06/2019 Page 18

Department of Physics

Science Examples – Vector

class Vector3D:
def __init__(self , x, y, z):

self.x, self.y, self.z = x, y, z

def __add__(self ,other):
return Vector3D(self.x+other.x,

self.y+other.y,
self.z+other.z)

@property
def length(self):

return (self.x**2+ self.y**2
+self.z**2)**0.5

from vector import Vector3D

v1 = Vector3D(0, 1, 2)
v2 = Vector3D(1,-3, 0)
v3 = v1 + v2
print(v3.length) # 3.0

I Variable type with optimized
behaviour.

I Add custom functionality

24/06/2019 Page 19

Department of Physics

Science Examples – Dataset
import numpy as np

class Dataset:
mandatory_metadata = ["label", "color", "marker"]
def __init__(self , datafile , ** metadata):

for key in self.mandatory_metadata:
if key not in metadata:

raise KeyError("Missing metadata", key)
self.metadata = metadata
self.data = np.loadtxt(datafile , delimiter=",")
self.validate ()

def validate(self):
if self.data.shape != (4, 10):

raise ValueError("Bad shape of data.")

@property
def label(self):

return self.metadata["label"]

def peak_row(self):
return self.data.max(axis =1). argmax ()

from dataset import Dataset

ds = Dataset("data_0.csv",
label="calibration",
color="r",
marker="+")

print(ds.label)

I Store additional info with data.
I Validate data on load.
I Calculated specific quantities.

24/06/2019 Page 20

Department of Physics

Science Examples – Sensors
from urllib.request import urlopen

class Sensor:
def __init__(self , offset=0, scale_factor =1):

self.offset = offset
self.scale = scale_factor

def get_value(self):
return (self._get_raw ()+ self.offset)*self.scale

def _get_raw(self):
raise NotImplementedError

class WebSensor(Sensor):
def __init__(self , url , *args , ** kwargs):

super (). __init__ (*args , ** kwargs)
self._url = url

def _get_raw(self):
res = urlopen(self._url)
return float(res.read ())

from sensors import WebSensor

sensor = WebSensor(
"https :// crbn.ch/sensor", 273
)

print(sensor.get_value ())

I Store configuration with
functionality.

I Allow sensors with different
access methods.

24/06/2019 Page 21

Department of Physics

Science Examples – Value with Uncertainty

from numpy import sqrt

class UncertVal:
def __init__(self , value , uncertainty =0):

self.val = value
self.sd = uncertainty

def __str__(self):
return f"{self.val} +/- {self.uc}"

def add(self , other , corr =0):
return UncertVal(self.val+other.val ,

sqrt(self.sd**2 + other.sd**2 +
2* self.sd * other.sd * corr))

def __add__(self , other):
return self.add(other)

from uncertval import UncertVal

a = UncertVal(2, 0.3)
b = UncertVal(3, 0.4)
print(a+b) # 5 +/- 0.5

I Group several values.
I Manage access to values.
I Define operators respecting

relations between values.

24/06/2019 Page 22

Department of Physics

Object-Oriented Design Principles and Patterns

How to do Object-Oriented Design right:
I KIS & iterate: When you see the same

pattern for the third time it might be a
good time to create an abstraction
(refactor).

I Sometimes it helps to sketch with pen
and paper.

I Classes and their inheritance often
have no correspondence to the
real-world, be pragmatic instead of
perfectionist.

I Testability (with unittests) is a good
design criterium.

How design principles can help:
I Design principles tell you in an abstract

way what a good design should look
like (most come down to loose
coupling).

I Design Patterns are concrete solutions
for reoccurring problems.

24/06/2019 Page 23

Department of Physics

Some Design Principles

Scope of classes:
I One class = one single clearly

defined responsibility.
I Favor composition over inheritance.

Inheritance is not primarily intended
for code reuse, its main selling point is
polymorphism. “Do I want to use these
subclasses interchangeably?”

I Identify the aspects of your
application that vary and separate
them from what stays the same.
Classes should be “open for
extension, closed for modification”
(Open-Closed Principle).

How to design (programming)
interfaces:

I Principle of least knowledge.
Each unit should have only limited
knowledge about other units. Only talk
to your immediate friends.

I Minimize the surface area of the
interface.

I Program to an interface, not an
implementation. Do not depend upon
concrete classes.

24/06/2019 Page 24

Department of Physics

Design Patterns

Purpose & background:
I Idea of concrete design approach for

recurring problems.
I Closely related to the rise of the

traditional OOP languages C++ and
Java.

I More important for compiled languages
(Open-Closed principle stricter!) and
those with stronger enforcement of
encapsulation.

Examples:
I Decorator pattern
I Strategy pattern
I Factory pattern
I . . .

A comprehensive list can be found here.

24/06/2019 Page 25

https://en.wikipedia.org/wiki/Software_design_pattern

Department of Physics

Decorator Pattern

24/06/2019 Page 26

Department of Physics

Decorator Pattern – Motivation

Challenge:
I How to modify the behaviour

of an individual object . . .
I . . . and allowing for multiple

modifications.

Example: Implement a range of
products of a coffee house chain

But what about the beloved
add-ons?

class Beverage:
imagine some attributes like
temperature , amount left ,...
name = "beverage"
cost = 0.00

def __str__(self):
return self.name

class Coffee(Beverage):
name = "coffee"
cost = 3.00

class Tea(Beverage):
name = "tea"
...

24/06/2019 Page 27

Department of Physics

Decorator Pattern – First try

Solution:
I Implementation via

subclasses

Issue: Number of subclasses
explodes to allow for multiple
modifications (e.g.
CoffeeWithMilkAndSugar).

class Coffee(Beverage):
name = "coffee"
cost = 3.00

class CoffeeWithMilk(Coffee):
name = "coffee with milk"
cost = 3.20

class CoffeeWithSugar(Coffee):
name = "coffee with sugar"
...

24/06/2019 Page 28

Department of Physics

Decorator Pattern – Second try

Solution:
I Implementation with switches

Issue: No additional add-ons
implementable without changing
the class (violation of the
open-close principle!).

class Coffee(Beverage):
def __init__(self , milk=False , sugar=False):

self._with_milk = milk
self._with_sugar = sugar

def __str__(self):
desc = "coffee"
if self._with_milk:

desc += ", with milk"
if self._with_sugar:

desc += ", with sugar"
return desc

@property
def cost(self):

price = 3.00
if self._with_milk:

price += 0.20
if self._with_sugar:

price += 0.30
return price

24/06/2019 Page 29

Department of Physics

Decorator Pattern – Implementation

Solution:
I Create a class that is a

beverage and wraps a
beverage itself.

I Possibility to create a chain of
decorators.

I Composition solves the
problem.

I Downside: Need to
implement all functions (some
are potentially just fed
through the decorator).

class DecoratedBeverage(Beverage):
def __init__(self , beverage):

self.beverage = beverage

class Milk(DecoratedBeverage):
def __str__(self):

return str(self.beverage) + ", with milk"

@property
def cost(self):

return self.beverage.cost + 0.30

coffee_with_milk = Milk(Coffee ())

Do not confuse the decorator pattern with Python’s function decorators!

24/06/2019 Page 30

Department of Physics

Strategy Pattern

24/06/2019 Page 31

Department of Physics

Strategy Pattern – Motivation (I)

Let’s implement a duck . . .
class Duck:

def __init__(self):
for simplicity this example
class is stateless

def quack(self):
print("Quack!")

def display(self):
print("Boring looking duck.")

def take_off(self):
print("Run fast , flap wings.")

def fly_to(self , destination):
print("Fly to", destination)

def land(self):
print("Extend legs , touch down.")

24/06/2019 Page 32

Department of Physics

Strategy Pattern – Motivation (II)

. . . and different types of ducks!

Oh, no! The rubber duck should
not fly! We need to overwrite all
the methods about flying.

I What if we want to introduce a
DecoyDuck as well?

I What if a normal duck suffers
a broken wing?

⇒ It makes more sense to
abstract the flying behaviour.

class RedheadDuck(Duck):
def display(self):

print("Duck with a read head.")

class RubberDuck(Duck):
def quack(self):

print("Squeak!")

def display(self):
print("Small yellow rubber duck.")

24/06/2019 Page 33

Department of Physics

Strategy Pattern – Implementation (I)

I Create a class to
describe the flying
behaviour . . .

I . . . give Duck an
instance of it . . .

I . . . and handle all
the flying stuff via
this instance

class FlyingBehavior:
def take_off(self):

print("Run fast , flap wings.")
def fly_to(self , destination):

print("Fly to", destination)
def land(self):

print("Extend legs , touch down.")

class Duck:
def __init__(self):

self.flying_behavior = FlyingBehavior ()
def take_off(self):

self.flying_behavior.take_off ()
def fly_to(self , destination):

self.flying_behavior.fly_to(destination)
def land(self):

self.flying_behavior.land()
display , quack as before ...

24/06/2019 Page 34

Department of Physics

Strategy Pattern – Implementation (II)

I Other example of
composition over
inheritance.

I Encapsulation of
function
implementation in
the strategy object.

I Useful pattern to
e.g. define
optimisation
algorithm at
runtime.

class NonFlyingBehavior(FlyingBehavior):
def take_off(self):

print("It’s not working :-(")
def fly_to(self , destination):

raise Exception("I’m not flying.")
def land(self):

print("That won’t be necessary.")
class RubberDuck(Duck):

def __init__(self):
self.flying_behavior = NonFlyingBehavior ()

def quack(self):
print("Squeak!")

def display(self):
print("Small yellow rubber duck.")

class DecoyDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior ()
different display , quack implementation ...

24/06/2019 Page 35

Department of Physics

Take-aways

I Object-oriented programming offers a powerful pradigm to structure your code.
I Inheritance, design principles and patterns allow to avoid repetitions (DRY).
I But do not overcomplicate things and always ask yourself if applying a particular

functionality makes sense in the given context!

24/06/2019 Page 36

Department of Physics

Extra

Department of Physics

Stop Writing Classes?

There are good reasons for not writing classes:
I A class is a tightly coupled piece of code, can be an obstacle for change. Complicated

inheritance hierarchies hurt.
I Tuples can be used as simple data structures, together with stand-alone functions.
I Introduce classes later, when the code has settled.
I Functional programming can be very elegant for some problems, coexists with object

oriented programming.

(see “Stop Writing Classes” by Jack Diederich)

24/06/2019 OOP Page 38

Department of Physics

Functional Programming

There are good reasons for not writing classes:
I Pure functions have no side effects. (mapping of arguments to return value, nothing else)
I Great for parallelism and distributed systems. Also great for unittests and TDD (Test Driven

Development).
I It’s interesting to take a look at functional programming languages (e.g. Haskell, J) to get a

fresh perspective.

24/06/2019 OOP Page 39

Department of Physics

Functional Programming in Python

Python supports functional
programming to some extend:

I Functions are just objects,
pass them around!

I Functions can be nested and
remember their context at the
time of creation (closures,
nested scopes).

def get_hello(name):
return "hello " + name

a = get_hello
print(a("world")) # prints "hello world"

def apply_twice(f, x):
return f(f(x))

print(apply_twice(a, "world"))
prints "hello hello world"

def get_add_n(n):
def _add_n(x):

return x + n
return _add_n

add_2 = get_add_n (2)
add_3 = get_add_n (3)
add_2 (1) # returns 3
add_3 (1) # returns 4

24/06/2019 OOP Page 40

	What is OOP?
	Fundamental Principles of OOP
	Specialities in Python
	Science Examples
	Design Patterns
	Extra

