University of
Zurich™ P

Department of Physics Scientific Programming with Python

/3

[

Python meets C/C++ June 27, 2019

Exercises
Licence: CC-by-sa

Before you start:
— create a suitable directory for this exercise
— download the zipped material from http://www.physik.uzh.ch/~python/python/lecture_
ct++/

Exercise 1: Root Finder

Use the Newton method (z,, = -1 — f(2n-1)/f (xp—1) with f : R — R) to find a root (or
more generic for any value a € V¢ in the value domain of f a value of « such that f(z) = a).

Design the algorithm first in pure Python and then in cython. Compare the performance.

Tip: You can start with a simple version and then improve the functionality, e.g. defining the
function or the precision of the derivative calculation at runtime.

Exercise 2: Differential Equation Solver

Implement the functionality of a differential equation solver taking as arguments the starting
value of the independent, ¢ = ty, and the dependent variable, x = g, as well as the actual
equation as a function 2’ = f(z,1).

Create first the pure Python and then the cython implementation. You can take your favourite
solving algorithm (Euler (x(t+At) = z(t)+2'(t)At), Runge-Kutta, ...; en.wikipedia.org/wiki/
Numerical;nethods,for,ordinary,differential,equations).

Tip: Create it first for a single equation and afterwards expand it to an array of coupled
equations also allowing for higher-orders. The output of the solver could be an array of z(t) at
the different time steps or just the value of x at the final time.

You can use as a test bed for the single equation d7'/dt + C(T — Tp) = 0 corresponding to the
temperature change of an object in an environment with ambient temperature Ty. For a set of
functions you can use the differential equation of a damped oscillator d2z/dt?+ fdz /dt +w?z = 0
(i.e. with the second trivial equation z’ = dx/dt).

Christian Elsasser June 27, 2019

http://www.physik.uzh.ch/~python/python/lecture_c++/
http://www.physik.uzh.ch/~python/python/lecture_c++/
http://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
http://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations

Python meets C/C++, Scientific Programming with Python 2019 2

Exercise 3: Wrap a Class in cython

The folder wrapping contains a C++ class Vector and its derived class UnitVector. Have a
look at the corresponding files. Some of the features are commented out at the moment.

Write a wrapper in cython for the Vector class (¢f. lecture). Compile the code to a shared
object and test it in Python.

Include now also the coordinates function using std: :vector.
Include the addition operator.

Also try to include all the other operators.

Finally, write also a wrapper for the UnitVector class.

Write some test functions in Python and measure the CPU time. If you are still not bored about
wrapping C++ classes, write the same test functions in C++ and compare the used CPU time.

Exercise 4: Wrap a Class with SWIG

The folder wrapping contains a C++ class Vector and its derived class UnitVector. Have a
look at the corresponding files. Some of the features are commented out at the moment.

Write a SWIG interface file for the Vector class (cf. lecture). Compile a shared object and test
it in Python.

Include sequentially the excluded functions and operators, modify the interface file and recompile
the shared object.

Write some test functions in Python to measure the CPU time, compare it to — if done — the
cython wrapping and the same test functions in pure C+—+.

Exercise 5: Exception Handling in cython

This exercise has the goal to play a bit with the exception behaviour in cython.

You can find in the folder exception for this part the file exceptl.pyx a function throwing
an error if its input is zero. Otherwise it returns the input value. Compile this cython code
running the corresponding setup script setup_exceptl.py as we have learnt in the lecture. (Be
aware that you might need to change the shared object name due to additional extensions!)
Afterwards you can use the runExceptl.py script to run the function in an except clause with $
python runExceptl.py <input number>. What happens if the input is 0, 1 or 27 And why?

Add the except * statement in the definition of pythonError in exceptl.pyx. Recompile the
file and run it again. What happens now?

Now change it to except 1 and recompile it. What is now the outcome and why?

Now we want also study the handling of C++ exceptions. You can find a bunch of functions
raising C++ exceptions in except.h. The file except2.pyx wraps them. So compile this cython
code with the setup_except2.py file and import the created module in a Python session. Try
out what happens if you call the different wrapper functions. How can you change this annoying
behaviour (seen in the lecture)? How can you force the wrapper functions to throw a specific
Python error? Try it out!

In the last part of this exercise we want to discuss a specific difference between Python and C.
You can find in the corresponding exercise folder the file div.c. Compile this program with
$ g++ div.c -o div. This program takes two numbers as arguments and calculates the ratio

Christian Elsasser June 27, 2019

Python meets C/C++, Scientific Programming with Python 2019 3

(e.g. $./div 3 4). What happens if you make a division by zero? Now start Python and
perform a division by zero. What happens?

Create a function in cython that calculates the ratio of two numbers. What is the output in
case of a division by zero here?

Cython has a way to force C behaviour on this issue. The cython module has a decorator
@cython.cdivision(bool), which can be called before the function. Try it out!

Exercise 6: Playing with STL in cython

Write an algorithm that finds all anagrams (i.e. words with the same set of letters) based on a
Python dictionary (Python) or a std: :map in cython. Use the /usr/share/dict/ words file as
input. What is the set of letter allowing to build to largest number of words? (If you struggle
with the algorithm, have a look at STL/anagram.py!)

Compare the Python and the cython implementation in terms of spent CPU time. Why does
the observed result occur? How can you improve the speed of the cython version?

Exercise 7: NumPy wvs. cython

One topic which was not discussed in the lecture, is the use of arrays in cython. You can find
in the back-up slides some information about this aspect. Typically, this is treated with typed
memoryviews allowing an efficient memory access. The declaration of arrays is done as, e.g. for a
two-dimensional double array double[:,::1]. The :1 part indicates the fastest changing index,
i.e. in doublel[:,::1] corresponds to a C-contiguous and double[::1,:] to a F-contiguous
array. double[:,:] is compatible with C- and F-contiguous arrays.

Write a function that returns the element-wise squared version of the input array.
Compare it to the NumPy and the Python calculation in terms of CPU time.

Write a function that takes two two-dimensional arrays and calculates the matrix product. Again
compare it to the NumPy matrix calculation in terms of speed.

If you still are interested in arrays in cython, play around with the different alignments and test
the impact on the speed of your code.

Exercise 8: Fortran

For those of you who still do it the Old School way: The folder fortran contains some files
including a README that can be used as a starting point for interfacing Python code with
Fortran77 and Fortran90 code. Have fun and play around!

Exercise 9: Auto-Regressive Model
We want to simulate an auto-regressive time series X; of the form
Xi=c+aXi_1+e

where ¢; is a uniform random number between —1 and 1, Xy = 0, ¢ is a constant and || < 1.

Create an algorithm returning the n-th value of the series. Use pure python as well as cython.
How large is the gain in CPU time?

Tip: You can import into cython C’s standard library random number generator for positive
integers and the maximum value wiht from libc.stdlib cimport rand, RAND_MAX.

Christian Elsasser June 27, 2019

