
OOP in Python, Scientific Programming with Python 2018 1

Department of Physics Scientific Programming with Python

OOP in Python June 25, 2018

Exercises

Exercise 0a: Ducks (20 min)

Look again at the slides on the strategy pattern and use the code examples to define the
following ducks1:

• normal duck

• redheaded duck

• black duck

• rubber duck

• decoy duck

Once you defined your classes:

(a) Create a group of 3 normal, 3 redheaded, 1 black, 1 rubber and 1 decoy duck. Store
all ducks in a list and then call display for each of the ducks.

(b) Let one of the normal ducks break its wings, make sure it will not be able to fly.

(c) Change your duck classes such that you can give your indiviual ducks a name. Use
that name when displaying the duck.

(d) Change your duck classes such that they store their position (as a string). Let
fly_to change the position and display the present position on take off and landing.

(e) Add more functionality, be creative.

Exercise 0b: Vectors (30 min)

The file vector.py contains an implementation of an n-dimensional vector. Some of the
functions are not yet complete:

1You are of course free to use real duck breeds (see https://en.wikipedia.org/wiki/List_of_duck_
breeds) if you prefere.

Christian Elsasser June 25, 2018

https://en.wikipedia.org/wiki/List_of_duck_breeds
https://en.wikipedia.org/wiki/List_of_duck_breeds

OOP in Python, Scientific Programming with Python 2018 2

(a) Implement the addition of two vectors via the magic function add . Make sure
that the dimensions of the two vectors are aligned.

(b) Do the same for the scalar product with the function mul .

(c) Implement str which is the magic function to represent the vector as string (i.e.
str(v)). Define a reasonable string representation.

(d) Create the property length that

• returns the Euclidiean length of the vector

• allows to scale the vector to a new length by v.length = <new length>

• sets the vector to zero via del v.length.

(e) Create a subclass for three-dimensional vectors Vector3D with a suitable constructor
and implement the magic function pow (the operator **) as cross-product2.
Important: The implementation should NOT lead to any change in the parent class.

Exercise 0c: Scatter plot (15 min)

Take a pen and paper and design a class representing scatter plots that can be drawn?

• What variables does a scatter plot have?

• What methods does it have?

• How do the signatures of these methods look like?

Exercise 1: Understanding OOP (20 min)

The graph module (provided in the archive) contains a set of classes for representing
graphs. On a piece of paper reverse engineer its design:

(a) Write down all class names, their methods and data attributes; try to understand
what all of them do (read the documentation!).

(b) Figure out how different classes are related. Where is inheritance used, where com-
position? Draw a simple diagram.

2The cross-product is defined as v = v1 × v2 =

(x1

y1
z1

)
×

(x2

y2
z2

)
=

(y1z2 − y2z1
z1x2 − z2x1

x1y2 − x2y1

)

Christian Elsasser June 25, 2018

OOP in Python, Scientific Programming with Python 2018 3

(c) Use the classes to construct the following graph:

Exercise 2: Decorator Pattern (30 min)

Modify the code in starbuzz.py to use the Decorator Pattern.

(a) Define a class BeverageDecorator which is instantiated with a beverage object and
contains two methods: get cost which adds the cost of the decorator to the total
drink cost and get description which updates the description of the drink. (You
should be able to simplify the existing classes alot, when doing this.)

(b) Subclassing BeverageDecorator define new ingredients: Milk and Cream. Use the
ingredients to produce new drinks combinations.

Exercise 3: Iterator Pattern (30 min)

The iterator pattern allows to build classes in Python that have instances that you can
loop over i.e. with for o in obj. Implement such a Python iterator which iterates over
string characters (ASCII only) returning their ASCII code (obtained by ord function):

(a) Define a new iterator class which contains two methods:

• init – a constructor taking the ASCII string as a argument

• next – returns the ASCII code of the next character or raises a StopIteration
exception if the string end was encountered.

(b) Define a new iterable class which wraps around a string and contains iter

method which returns the iterator instance.

(c) Test your code using a for loop.

Christian Elsasser June 25, 2018

OOP in Python, Scientific Programming with Python 2018 4

Exercise 4: Extending Classes (55 min)

Extend the graph library to solve a search problem. In this exercise, your goal is to
write a travel planning application based on the graph module. We want to represent a
set of cities as nodes in a graph, with edges between nodes representing different kinds
of transportation.

(a) Define a class CityNode which extends Node class by a new property name which is
defined on class instantiation.

(b) Define a class TransporationEdge extending Edge class. The edges should be di-
rected and have two kinds of weights: travel time and cost and a short description
defining the means of transportation.

(c) Implement the following city graph as an example:

(d) Now we want to find the quickest from Berlin to Cologne. Open shortest path.py

file. It contains SearchAlgorithm class, which implements Dijkastra algorithm for
finding the shortest path in a graph.

(e) Define a new class SearchGraph extending Graph class with methods for searching
for the shortest path. Which design pattern can you use in the example?

(f) Define new search algorithms to find the cheapest and fastest paths.

(g) Find the cheapest and fastest paths between Berlin and Cologne.

This exercise sheet is based on the exercises written by Bartosz Telenczuk, Niko Wilbert
for the Advanced Scientific Programming in Python School 2011

Christian Elsasser June 25, 2018

