
Department of Physics

Object-Oriented Programming
Scientific Programming with Python

Christian Elsasser

Based on talks by Niko Wilbert and Roman Gredig This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

June 25, 2018 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

Outline

I What is OOP?
I Encapsulation & Inheritance
I Specialities in Python
I Design Patterns

June 25, 2018 OOP Page 2

Department of Physics

Setting the scene

Object-oriented programming is a programming paradigm.

I Imperative programming
I Object-oriented
I Procedural

I Declarative programming
I Functional
I Logic

June 25, 2018 OOP Page 3

Department of Physics

What is Object-Oriented Programming?
Aim to segment the program into objects/instances of different classes:

I Instance variables to describe the characteristic and state of
the object

I Fundamental types
I Objects

I Methods to model the behaviour of the object

The definition of a class can be considered like a blue print. The
program itself will invoke instances of classes and execute methods of
these instances.

June 25, 2018 OOP Page 4

Department of Physics

Why might OOP be a good idea?

DRY (Don’t repeat yourself):

OOP means to create the functionality
of classes once with the possibility to use
them repeatedly in different algorithms.
In addition the inheritance in OOP means
that we can easily create new classes
acting as extensions based on existing
classes (see below).

KIS (Keep it simple):

The OOP paradigm allows to split the func-
tionality of programs into the basic build-
ing blocks and the algorithm invoking
them. Thus it creates a natural structure
within your code.

At one point the problem to solve becomes so complicated that a single sequence of program
instructions are not sufficient to effectively maintain the code.

June 25, 2018 OOP Page 5

Department of Physics

Example of a class
All classes are derived from object, even if this is not specified explicitly:

class Dog:
pass

class Dog:
def bark(self):

print("Wuff!")
snowy = Dog()
snowy.bark() # first argument (self) is bound to this Dog instance
snowy.color = "yellow" # added attribute a to snowy

Always define your data attributes first in __init__:

class Dog:
def __init__(self , color="brown"):

self.color = color

June 25, 2018 OOP Page 6

Department of Physics

Fundamental Principles of OOP (I)
Encapsulation

I Only what is necessary is exposed
(public interface) to the outside.

I Implementation details are hidden to
provide abstraction. Abstraction should
not leak implementation details.

I Abstraction allows us to break up a
large problem into understandable
parts.

In Python:
I No explicit declaration of variables/

functions as private or public
I Usually parts of class that are

supposed to be private with a starting
underline _

I Python works with documentation and
conventions instead of enforcement

June 25, 2018 OOP Page 7

Department of Physics

Example of Encapsulation

class Dog:
def __init__(self , color="brown"):

self.color = color
self._sound = "Wuff!"

def _open_mouth(self):
pass

def bark(self):
self._open_mouth ()
print(self._sound)

The author of the class Dog does
not want you to access explicitly
the sound variable or the method
to open the mouth.

June 25, 2018 OOP Page 8

Department of Physics

Fundamental Principles of OOP (II)
Inheritance

I Possibility to define new classes as
subclasses that are derived from /
inherit / extend a parent class.

I Override parts with specialized
behavior and extend it with additional
functionality.

In Python:
I Possibility of inherit from one or multiple

classes (latter one rather depreciated!!!)
I Invocation of parent methods with

super function

June 25, 2018 OOP Page 9

Department of Physics

Example of Inheritance

class Mammal:
def __init__(self):

self._heart = "Bubum!"
def heart_beat(self):

print(self._heart)
def make_sound(self):

print("?")
class Dog(Mammal):

def __init__(self):
super(Dog ,self). __init__ ()

def make_sound(self):
print("Bark!")

d = Dog()
d.make_sound () # "Bark!"
d.heart_beat () # "Bubum!"
super(type(d),d). make_sound () # "?"

I super(Dog,self).
__init__() is the call to the
parent constructor. Without
this command the dog will not
have a heart.

I super allows also to explicitly
access methods of the parent
class.

June 25, 2018 OOP Page 10

Department of Physics

Fundamental Principles of OOP (III)
Polymorphism

I Different subclasses can be treated
like the parent class, but execute their
specialized behavior.

I Example: When we let a mammal
make a sound that is an instance of the
dog class, then we get a barking sound.

In Python:
I Python is a dynamically typed

language, which means that the type
(class) of a variable is only known when
the code runs.

I Duck Typing: No need to know the
class of an object if it provides the
required methods: “When I see a bird
that walks like a duck and swims like a
duck and quacks like a duck, I call that
bird a duck.”

I Type checking can be performed via the
isinstance function, but generally
prefer duck typing and polymorphism.

June 25, 2018 OOP Page 11

Department of Physics

Example of Polymorphism

def record_sound(mammal):
_start_recording ()
if isinstance(mammal ,Cat)

print("No recording for you!")
else:

mammal.make_sound ()
_stop_recording ()

d,c,b = Dog(),Cat(),Bear()
record_sound(d) # "Bark!"
record_sound(c) # "No recording for you!"
record_sound(b) # "Brum!"

I record_sound would work for
all objects having a method
make_sound, not just
mammels.

I Dynamic typing make proper
function overloading
impossible!

I isinstance(mammal,Cat) is
equivalent to
type(mammal)==Cat.

June 25, 2018 OOP Page 12

Department of Physics

Python Specialities – Magic Methods

class Vector3D:
def __init__(self ,x,y,z):

self.x,self.y,self.z=x,y,z
def __add__(self ,other):

return Vector3D(self.x+other.x,
self.y+other.y,
self.z+other.z)

v1 = Vector3D (1,2,3)
v2 = Vector3D (2,3,4)
v3 = v1 + v2 # (3,5,7)

I Magic methods (full list here)
start and end with two
underscores (“dunder”)

I They customise standard
Python behavior (e.g.
operator overloading)

June 25, 2018 OOP Page 13

https://docs.python.org/3/reference/datamodel.html#special-method-names

Department of Physics

Python Specialities – Function Decorators

class Vector3D:
def __init__(self ,x,y,z):

self.x,self.y,self.z=x,y,z
def _get_length(self):

return (self.x**2+ self.y**2
+self.z**2)**0.5

length = property(_get_length)

v1 = Vector3D (1,2,2)
v1.length # 3.0

I property allow you to add
behavior to data attributes.

I property has upto four
variables:

1. Getter
2. Setter
3. Deleter
4. Documentation string

June 25, 2018 OOP Page 14

Department of Physics

Advanced OOP Techniques
There many advanced techniques that we didn’t cover:

I Multiple inheritance: Deriving from multiple classes; it can create a real mess. Need to
understand the MRO (Method Resolution Order) to understand super.

I Monkey patching: Modify classes and objects at runtime, e.g. overwrite or add methods
I Abstract Base Classes: Enforce that derived classes implement particular methods from the

base class.
I Metaclasses: (derived from type), their instances are classes.

I Great way to dig yourself a hole when you think you are clever.
I Try to avoid these, in most cases you would regret it. (KIS)

June 25, 2018 OOP Page 15

Department of Physics

Object-Oriented Design Principles and Patterns
How to do Object-Oriented Design right:

I KIS & iterate: When you see the same
pattern for the third time then it might
be a good time to create an abstraction
(refactor).

I Sometimes it helps to sketch with pen
and paper.

I Classes and their inheritance often
have no correspondence to the
real-world, be pragmatic instead of
perfectionist.

I Testability (with unittests) is a good
design criterium.

How design principles can help:
I Design principles tell you in an abstract

way what a good design should look
like (most come down to loose
coupling).

I Design Patterns are concrete solutions
for reoccurring problems.

June 25, 2018 OOP Page 16

Department of Physics

Some Design Principles
Scope of classes:

I One class = one single clearly
defined responsibility.

I Favor composition over inheritance.
Inheritance is not primarily intended for
code reuse, its main selling point is
polymorphism. Ask yourself: “Do I want
to use these subclasses
interchangeably?”

I Identify the aspects of your
application that vary and separate
them from what stays the same.
Classes should be “open for extension,
closed for modification” (Open-Closed
Principle).

How to design interfaces:
I Principle of least knowledge.

Each unit should have only limited
knowledge about other units. Only talk
to your immediate friends.

I Minimize the surface area of the
interface.

I Program to an interface, not an
implementation. Do not depend upon
concrete classes.

June 25, 2018 OOP Page 17

Department of Physics

Design Patterns
Purpose & background:

I Idea of concrete design approach for
recurring problems.

I Closely related to the rise of the
traditional OOP languages C++ and
Java

I More important for compiled languages
(Open-Closed principle stricter!) and
those with stronger enforcement of
encapsulation

Examples:
I Decorator pattern
I Strategy pattern
I Factory pattern
I . . .

A comprehensive list can be found here.

June 25, 2018 OOP Page 18

https://en.wikipedia.org/wiki/Software_design_pattern

Department of Physics

Decorator Pattern

June 25, 2018 OOP Page 19

Department of Physics

Decorator Pattern – Motivation
Challenge:

I How to modify the behaviour
of an individual object . . .

I . . . and allowing for multiple
modifications

Example: Implement a range of
products of a coffee house chain

But what about the beloved add-
ons?

class Beverage:
imagine some attributes like
temperature , amount left ,...
def get_desc(self):

return "beverage"
def get_cost(self):

return 0.00

class Coffee(Beverage):
def get_desc(self):

return "coffee"
def get_cost(self):

return 3.00

class Tee(Beverage):
def get_desc(self):

return "tea"
...

June 25, 2018 OOP Page 20

Department of Physics

Decorator Pattern – First try
Solution:

I Implementation via
subclasses

Issue: Number of sub-
classes explodes to allow for
multiple modifications (e.g.
CoffeeWithMilkAndSugar)

class Coffee(Beverage):
def get_desc(self):

return "coffee"
def get_cost(self):

return 3.00

class CoffeeWithMilk(Coffee):
def get_desc(self):

return "coffee with milk"
def get_cost(self):

return 3.20

class CoffeeWithSugar(Coffee):
def get_desc(self):

return "coffee with sugar"
...

June 25, 2018 OOP Page 21

Department of Physics

Decorator Pattern – Second try
Solution:

I Implementation with switches

Issue: No additional add-ons im-
plementable without changing the
class (violation of the open-close
principle!)

class Coffee(Beverage):
def __init__(self ,withMilk ,withSugar):

self._withMilk = withMilk
self._withSugar = withSugar

def get_desc(self):
desc = "coffee"
if self._withMilk:

desc += ", with milk"
if self._withSugar:

desc += ", with sugar"
return desc

def get_cost(self):
price = 3.00
if self._withMilk:

price += 0.2
if self._withSugar:

price += 0.3
return price

June 25, 2018 OOP Page 22

Department of Physics

Decorator Pattern – Implementation
Solution:

I Create a class that is a
beverage and wraps a
beverage itself

I Possibility to create a chain of
decorators

I Composition solves the
problem

I Downside of implementation
of all functions (some are
potentially just fed through the
decorator)

class BeverageDecorator(Beverage):
def __init__(self , beverage):

self.beverage = beverage

class Milk(BeverageDecorator):
def get_desc(self):

return self.beverage.get_desc () +
", with milk"

def get_cost(self):
return self.beverage.get_cost ()

+ 0.30

coffee_with_milk = Milk(Coffee ())

Do not confuse the decorator pattern with Python’s
function decorators!

June 25, 2018 OOP Page 23

Department of Physics

Strategy Pattern

June 25, 2018 OOP Page 24

Department of Physics

Strategy Pattern – Motivation (I)
Let’s implement a duck . . . class Duck:

def __init__(self):
for simplicity this example
class is stateless

def quack(self):
print("Quack!")

def display(self):
print("Boring looking duck.")

def take_off(self):
print("Run fast , flap wings.")

def fly_to(self , destination):
print("Fly to", destination)

def land(self):
print("Extend legs , touch down.")

June 25, 2018 OOP Page 25

Department of Physics

Strategy Pattern – Motivation (II)
. . . and different types of ducks!

Oh, no! The rubber duck does not
fly! We need to overwrite all the
methods about flying.

I What if we want to introduce a
DecoyDuck as well?

I What if a normal duck suffers
a broken wing?

⇒ It makes more sense to abstract
the flying behaviour.

class RedheadDuck(Duck):
def display(self):

print("Duck with a read head.")

class RubberDuck(Duck):
def quack(self):

print("Squeak!")

def display(self):
print("Small yellow rubber duck.")

June 25, 2018 OOP Page 26

Department of Physics

Strategy Pattern – Implementation (I)

I Create a class to
describe the flying
behaviour . . .

I . . . give Duck an
instance of it . . .

I . . . and handle all
the flying stuff via
this instance

class FlyingBehavior:
def take_off(self):

print("Run fast , flap wings.")
def fly_to(self , destination):

print("Fly to", destination)
def land(self):

print("Extend legs , touch down.")

class Duck:
def __init__(self):

self.flying_behavior = FlyingBehavior ()
def take_off(self):

self.flying_behavior.take_off ()
def fly_to(self , destination):

self.flying_behavior.fly_to(destination)
def land(self):

self.flying_behavior.land()
display , quack as before ...

June 25, 2018 OOP Page 27

Department of Physics

Strategy Pattern – Implementation (II)

I Other example of
composition over
inheritance

I Encapsulation of
function
implementation in
the strategy object

I Useful pattern to
e.g. define
optimisation
algorithm at
runtime.

class NonFlyingBehavior(FlyingBehavior):
def take_off(self):

print("It’s not working :-(")
def fly_to(self , destination):

raise Exception("I’m not flying.")
def land(self):

print("That won’t be necessary.")
class RubberDuck(Duck):

def __init__(self):
self.flying_behavior = NonFlyingBehavior ()

def quack(self):
print("Squeak!")

def display(self):
print("Small yellow rubber duck.")

class DecoyDuck(Duck):
def __init__(self):

self.flying_behavior = NonFlyingBehavior ()
different display , quack implementation ...

June 25, 2018 OOP Page 28

Department of Physics

Take-aways

I Object-oriented programming offers a powerful pradigm to structure your code.
I Inheritance and design principles and patterns allow to avoid repetitions (DRY).
I But do not overcomplicate things and ask always yourself if applying a particular

functionality makes sense in the given context!

June 25, 2018 OOP Page 29

Department of Physics

Extra

Department of Physics

Stop Writing Classes?
There are good reasons for not writing classes:

I A class is a tightly coupled piece of code, can be an obstacle for change. Complicated
inheritance hierarchies hurt.

I Tuples can be used as simple data structures, together with stand-alone functions.
I Introduce classes later, when the code has settled.
I Functional programming can be very elegant for some problems, coexists with object

oriented programming.

(see “Stop Writing Classes” by Jack Diederich)

June 25, 2018 OOP Page 31

Department of Physics

Functional Programming
There are good reasons for not writing classes:

I Pure functions have no side effects. (mapping of arguments to return value, nothing else)
I Great for parallelism and distributed systems. Also great for unittests and TDD (Test Driven

Development).
I It’s interesting to take a look at functional programming languages (e.g. Haskell, J) to get a

fresh perspective.

June 25, 2018 OOP Page 32

Department of Physics

Functional Programming in Python
Python supports functional pro-
gramming to some extend:

I Functions are just objects,
pass them around!

I Functions can be nested and
remember their context at the
time of creation (closures,
nested scopes).

def get_hello(name):
return "hello " + name

a = get_hello
print(a("world")) # prints "hello world"

def apply_twice(f, x):
return f(f(x))

print(apply_twice(a, "world"))
prints "hello hello world"

def get_add_n(n):
def _add_n(x):

return x + n
return _add_n

add_2 = get_add_n (2)
add_3 = get_add_n (3)
add_2 (1) # returns 3
add_3 (1) # returns 4

June 25, 2018 OOP Page 33

	Extra

