
Nicola Chiapolini, June 25, 2018 1 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Best Practices

Nicola Chiapolini

Physik-Institut
University of Zurich

June 25, 2018

Based on talk by Valentin Haenel https://github.com/esc/best-practices-talk

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://github.com/esc/best-practices-talk
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, June 25, 2018 2 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Introduction
I We write code regularly
I We have not been formally trained

Best Practices
I evolved from experience
I increase productivity
I decrease stress
I still evolve with tools and languages

Development Methodologies
I e.g. Agile Programming or Test Driven Development
I lots of buzzwords
I still many helpful ideas

Nicola Chiapolini, June 25, 2018 3 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, June 25, 2018 4 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, June 25, 2018 5 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Coding Style

I readability counts (often more then brevity or speed)

I give things intention revealing names
I For example: numbers instead of n
I For example: numbers instead of list_of_float_numbers
I See also: Ottinger’s Rules for Naming

Example
def fun(n):

""" no comment """

r = 1

for i in n:

r *= i

return r

http://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, June 25, 2018 5 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Coding Style

I readability counts (often more then brevity or speed)

I give things intention revealing names
I For example: numbers instead of n
I For example: numbers instead of list_of_float_numbers
I See also: Ottinger’s Rules for Naming

Example
def my_product(numbers):

""" Compute the product of a sequence of numbers. """

total = 1

for item in numbers:

total *= item

return total

http://www.physik.uzh.ch/~python/python/lecture_bp+git/naming.pdf

Nicola Chiapolini, June 25, 2018 6 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Formatting Code

I use coding conventions, e.g: PEP-8
I conventions specify

I layout
I whitespace
I comments
I naming
I . . .

I OR use a consistent style (especially when collaborating)

https://www.python.org/dev/peps/pep-0008/

Nicola Chiapolini, June 25, 2018 7 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Formatting Code: Tools

Checker
I pylint (e.g. pylint3 my_product.py)
I pycodestyle (e.g. python3 -m pycodestyle my_product.py)
I pydocstyle (e.g. python3 -m pydocstyle my_product.py)
I flake8 (e.g. python3 -m flake8 my_product.py)

Formatter
I autopep8 (e.g autopep8 --in-place my_product.py)
I yapf3 (e.g yapf3 --in-place my_product.py)

https://www.pylint.org/
https://pypi.org/project/pycodestyle/
http://www.pydocstyle.org/en/latest/
https://pypi.org/project/flake8/
https://pypi.org/project/autopep8/
https://github.com/google/yapf

Nicola Chiapolini, June 25, 2018 8 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Documenting Code: Docstrings

Example
def my_product(numbers):

""" Compute the product of a sequence of numbers. """

I at least a single line
I also for yourself
I is on-line help too

I Document arguments and return objects, including types
I For complex algorithms, document every line,

and include equations in docstring
I Use docstring conventions: PEP257 and/or numpy

https://www.python.org/dev/peps/pep-0257/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Nicola Chiapolini, June 25, 2018 9 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Example Docstring
def my_product(numbers):

""" Compute the product of a sequence of numbers.

Parameters

numbers : sequence

list of numbers to multiply

Returns

product : number

the final product

Raises

TypeError

if argument is not a sequence or sequence contains

types that can't be multiplied

"""

Nicola Chiapolini, June 25, 2018 10 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Documenting Your Project

I tools generate website
from docstrings
I pydoc
I sphinx
I Overview List

I when project gets bigger
I how-to
I FAQ
I quick-start

https://docs.python.org/3/library/pydoc.html
http://www.sphinx-doc.org/en/stable/
https://wiki.python.org/moin/DocumentationTools

Nicola Chiapolini, June 25, 2018 11 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, June 25, 2018 12 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

import

I Don’t use the star import: from module import *

I not obvious what you need
I modules may overwrite each other
I Where does this function come from?
I will import everything in a module
I . . . unless you have a very good reason: e.g. pylab, interactive

I Put all imports at the beginning of the file. . .
I . . . unless you have a very good reason

Example
import my_product as mp

mp.my_product([1,2,3])

from my_product import my_product

my_product([1,2,3])

Nicola Chiapolini, June 25, 2018 13 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

import: Pitfalls

Python evaluates the imported code at import time.

""" Bad Things happen here. """

def append_one(list_=[]):

""" Do not use mutable default values """

list_.append(1)

return list_

def default_arg(bad=1/0):

""" Do not trigger exceptions in keyword-arguments """

return bad

def constants():

""" You will not be able to import this """

return 9999999 ** 9999999

Nicola Chiapolini, June 25, 2018 14 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Exceptions
I use try, except and raise

I often better then if (e.g. IndexError)

Example
try:

my_product(1, 2, 3)

except TypeError:

print("'my_product' expects a sequence")

raise TypeError

I don’t use special return values:
1, 0, False, None

I Fail early, fail often
I use built-in Exceptions

https://docs.python.org/3/library/exceptions.html

Nicola Chiapolini, June 25, 2018 15 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, June 25, 2018 16 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Keep it Simple (Stupid) – KIS(S) Principle

Keep it Simple

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it.
– Brian W. Kernighan

Nicola Chiapolini, June 25, 2018 17 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY)

I No copy & paste!

I Not just lines code, but knowledge of all sorts
I Do not express the same piece of knowledge in two places. . .
I . . . or you will have to update it everywhere

I It is not a question of if this may fail, but when

Nicola Chiapolini, June 25, 2018 18 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY): Types

Example
I Copy-and-paste a snippet, instead of refactoring it into a function
I Repeated implementation of utility methods

I because you don’t remember
I because you don’t know the libraries

numpy.prod([1,2,3])

I because developers don’t talk to each other
I Version number in source code, website, readme, package

filename

I If you detect duplication: refactor!

Nicola Chiapolini, June 25, 2018 19 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, June 25, 2018 20 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring

I re-organise your code without changing its functionality

I rethink earlier design decisions
I break large code blocks apart
I rename and restructure code

I will improve the readability and modularity
I will usually reduce the lines of code

Nicola Chiapolini, June 25, 2018 21 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Common Refactoring Operations

I Rename class/method/module/package/function
I Move class/method/module/package/function
I Encapsulate code in method/function
I Change method/function signature
I Organise imports (remove unused and sort)

I Always refactor one step at a time, and ensure code still works
I version control
I unit tests

Nicola Chiapolini, June 25, 2018 22 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

def my_func(numbers):

""" Subtract sum of numbers from product of numbers. """

total = 0

for item in numbers:

total += item

total2 = 1

for item in numbers:

total2 *= item

return total - total2

I split into functions
I use libraries/built-ins
I fix bug

Nicola Chiapolini, June 25, 2018 22 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from my_math import my_product, my_sum

def my_func(numbers):

""" Subtract sum of numbers from product of numbers. """

sum_value = my_sum(numbers)

product_value = my_product(numbers)

return sum_value - product_value

I split into functions
I use libraries/built-ins
I fix bug

Nicola Chiapolini, June 25, 2018 22 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from numpy import prod, sum

def my_func(numbers):

""" Subtract sum of numbers from product of numbers. """

sum_value = sum(numbers)

product_value = prod(numbers)

return sum_value - product_value

I split into functions
I use libraries/built-ins
I fix bug

Nicola Chiapolini, June 25, 2018 22 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from numpy import prod, sum

def my_func(numbers):

""" Subtract sum of numbers from product of numbers. """

sum_value = sum(numbers)

product_value = prod(numbers)

return product_value - sum_value

I split into functions
I use libraries/built-ins
I fix bug

Nicola Chiapolini, June 25, 2018 23 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies

Nicola Chiapolini, June 25, 2018 24 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

What is a Development Methodology?

Consists of:
I process used for development
I tools to support this process

Help answer questions like:
I How far ahead should I plan?
I What should I prioritise?
I When do I write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, June 25, 2018 24 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

What is a Development Methodology?

Consists of:
I process used for development
I tools to support this process

Help answer questions like:
I How far ahead should I plan?
I What should I prioritise?
I When do I write tests and documentation?

Right methodology depends on scenario.

Nicola Chiapolini, June 25, 2018 25 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

The Waterfall Model, Royce 1970

I sequential
I from manufacturing and construction

Nicola Chiapolini, June 25, 2018 26 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Agile Methods (late 90’s)

I minimal planning, small development iterations
I frequent input from environment
I very adaptive, since nothing is set in stone

Nicola Chiapolini, June 25, 2018 27 / 27

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Test Driven Development (TDD)

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

I Define unit tests first!
I Develop one unit at a time!

I more tomorrow

Nicola Chiapolini, June 25, 2018 1 / 1

Virtualenv

Using VirtualEnv

The Problem
I different tools need different versions of a module
I your Linux distribution does not include a module

The Solution: virtualenv
I initialise folder venv to store modules of this project

virtualenv --system-site-packages -p python3 --prompt="ve " venv

I update the search-paths to include folders in venv

. venv/bin/activate

I run your code or install libraries with pip
I undo changes to search-paths

deactivate

	Introduction
	Style and Documentation
	Special Python Statements
	KIS(S) & DRY
	Refactoring
	Development Methodologies
	Appendix
	Virtualenv

