
Department of Physics

Scientific Programming: Analytics
Scientific Programming with Python

Christian Elsasser

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

June 27, 2018 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

The Ecosystem of Homo Python Scientificus

[Ondřej Čertík/LANL]

June 27, 2018 Analytics – Christian Elsasser Page 2

Department of Physics

Table of Contents
Three use cases

I Financial engineering
I Graph analysis
I Signal and time series analysis

⇒What methods we are going to look at
I Minimisation/Optimisation
I Numerical integration
I Fast-Fourier Transformation
I Matrix calculus/Sparse matrices
I Distributions

We will not be able to go in the very details! But you find a lot of resources in the Scipy
Lectures here!
June 27, 2018 Analytics – Christian Elsasser Page 3

https://www.scipy-lectures.org/

Department of Physics

Fundamental Tools – SciPy & NumPy

June 27, 2018 Analytics – Christian Elsasser Page 4

Department of Physics

SciPy – or Where the Fun Really Starts

I Offering a large number of functionality for numerical computation
I scipy.linalg → Linear Algebra
I scipy.optimize → Numerical optimisation (incl. least square)
I scipy.integrate → Numerical integration
I scipy.stats → Statistics including a large set of distributions
I scipy.spatial → Spatial analysis like creation of Voroni sets, etc.
I more at http://docs.scipy.org/doc/scipy/reference/

I Eco-system of more advanced packages for data analysis, e.g.
I scikits.learn: Machine-learning algorithms
I scikits.image: Image processing
I pytables: data structure (based on HDF5)
I . . .

Remark: import scipy as sp only imports the most basic tools⇒ from scipy import stats

June 27, 2018 Analytics – Christian Elsasser Page 5

http://docs.scipy.org/doc/scipy/reference/

Department of Physics

Use case 1 – Financial Engineering
Situation:

I Three different assets
I Two stock indices Dow-Jones Industrial

(DJI) and Swiss-Market Index (SMI)
(performance yet unknown)

I One risk-free investment (e.g.
government bonds) at an annual return
of 1%.

Problem:
I Evaluate the last year performance of

the two stock indices ...
I ... and build a portfolio that minimises

the risk (volatility) while having a
minimum expected return of 14% p.a.

Approach:
1. Take the daily stock returns of two

indices

2. Use Maximum-Likelihood Estimation to
infer average return and volatility
(standard deviation).

3. Use these parameters together with the
correlation to build the optimum
portfolio using optimisation under
constraints.

Libraries discussed: Optimisation, Distri-
butions

June 27, 2018 Analytics – Christian Elsasser Page 6

Department of Physics

Maximum-Likelihood Estimation
Fundamentals:

I For a given sample of (observed)
values xi find the parameters θj that are
maximising the likelihood of the
observation based on the distribution
f (x |θ)

I

L =
∏

i

f (xi |θ)

I Problem equivalent to minimise:

−logL = −
∑

i

log(f (xi |θ)

Concrete case:
I Estimation of the daily returns by using

a Gaussian distribution

f (x |µ,σ) =
1√
2πσ

e−
(x−µ)2

2σ2

I Single Gaussian case is trivial as the
problem can be solved analytically with
µ̂ = x and σ̂ =

√
x2 − x2

June 27, 2018 Analytics – Christian Elsasser Page 7

Department of Physics

Minimisation Algorithms
Questions to ask:

I Is the objective function smooth?
I Is the objective function convex?
I Can I help the algorithm by providing

the exact Jacobian vector or Hessian
matrix?

I Are the parameters bound?
I Are the constraints?

Available algorithms:
I Simplex (Nelder-Mead)
I Bi-directional (Powell)
I (Quasi-)Newton (BFGS)
I Trust-method (Dogleg,Newton)

Check documentation of
scipy.optimize.minimize

I Choose the algorithm carefully based on your problem!
I A good conditioning (i.e. comparable scaling) is always beneficial

June 27, 2018 Analytics – Christian Elsasser Page 8

Department of Physics

Minimisation Algorithms – Differences
Comparison of different algorithms with the Rosenbrock function
f (x , y) = (x − 1)2 + 100(y − x2)2 and starting point (−3, 7.5)

Nelder-Mead BFGS Conjugate Gradient

Convergence heavily dependent on the choice of the algorithm and the initial starting point.

June 27, 2018 Analytics – Christian Elsasser Page 9

Department of Physics

Optimisation with Constraints
Problem:

I Find the fraction of investment in the
two indices pDJI and pSMI such that the
overall expected risk is minised . . .

I . . . with an expected return of at least
14%.

Mathematical formulation:
Total expected risk:

σ2 =(pDJIσDJI)
2 + (pSMIσSMI)

2

+ 2|pDJI||pSMI|ρσDJIσSMI

Total expected return:

µ = pDJIµDJI + pSMIµSMI + (1− pSMI − pDJI)µrf
Formulation in Python:

I Specialised minimisation algorithms for constraints: L-BFGS-B, SLSQP
I scipy.optimize.minimize understands bounds on parameters (i.e. trivial constraints) and

constraints as equality or inequality
I Normal constraints have to be formulated as function that has to be equal/larger than zero.

June 27, 2018 Analytics – Christian Elsasser Page 10

Department of Physics

Use case 2 – Graph Theory
Approach

I Graphs can be represented by matrices
(aij represents the connection from
node i to node j) called adjacency
matrices.

I By exponentiating the matrix (An) we
see which nodes are connected via n
sequential edges.

I The spectrum of A reveals information
about the structure of the graph.

We are using the airline connections of the
world as playground.

Libraries discussed: (Sparse) matrices

June 27, 2018 Analytics – Christian Elsasser Page 11

Department of Physics

One-page Introduction to Graph Theory

Graph:

1

2

3

4

5

Adjacency matrix:
1 2 3 4 5

1 0 1 1 1 0
2 0 0 0 0 1
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 0 0

Row = From, Column = To

I If there is an edge to a node itself,
entries on the diagonal

I Symmetric graph leads to symmetric
adjacency matrix

June 27, 2018 Analytics – Christian Elsasser Page 12

Department of Physics

More than Arrays – NumPy and Matrices
NumPy offers a matrix framework for linear algebra calculations, allowing to defining one- and
two-dimensional arrays as matrices

Matrices
»»» a = np.matrix([[1,2],[3,4]])
»»» b = np.matrix(np.random.rand(4))
»»» c = np.matrix(np.random.rand(3,3))

One-dimensional arrays→ 1× n matrices, i.e. row vectors

Matrices have some additional functionality (e.g. inverse: a.I, hermitian: a.H)

June 27, 2018 Analytics – Christian Elsasser Page 13

Department of Physics

Linear Algebra with SciPy – Bringing High-Performance Libraries
to the Table
Light version of SciPy’s linear algebra implementation at np.linalg

Examples of available functionality:
np.linalg.cholesky np.linalg.det np.linalg.eig
np.linalg.eigh np.linalg.qr np.linalg.svd

The functions are wrappers of the LAPACK linear algebra package

More functionality is embedded in the full SciPy implementation scipy.linalg, e.g.

Matrix Exponential

»»» a = np.matrix([[1,2],[3,4]])
»»» scipy.linalg.expm(a)

June 27, 2018 Analytics – Christian Elsasser Page 14

Department of Physics

Sparse Matrices
Purpose:

I Representation of graphs
I Representation of corpora

Implementation in Python:
I Different representations available in

scipy.sparse
I scipy.sparse.linalg contains certain

method to make calculations with
sparse matrices

Available types/flavours:
Block Sparse Row bsr_matrix
COOrdinate format coo_matrix good for random access; tuple of in-

dices and values
Compressed Sparse Column csc_matrix values, column/row indices
Compressed Sparse Row csr_matrix and non-zero entries up to row/column
DIAgonal storage dia_matrix
Dictionary of Keys dok_matrix good for construction
Row-based linked list lil_matrix
June 27, 2018 Analytics – Christian Elsasser Page 15

Department of Physics

Use case 3 – Signal/Time Series Analysis
Situation:

I You have data in the form of signals
(e.g. from a sensor) or time series.

I And you want to analyse them in terms
of their frequency spectrum.

Problem:
I Typically a problem to be performed

over and over again . . .
I . . . in certain applications is should go

fairly fast.

Approach:
I Applying a Fast-Fourier-Transformation

for a periodical function
I Calculating “by hand” the Fourier

transformation for different functions

Caution: For certain functionalities in
terms of signal analysis there is the library
scipy.signal

Libraries discussed: Fast-Fourier-
Transform, Integration

June 27, 2018 Analytics – Christian Elsasser Page 16

Department of Physics

Fast-Fourier-Transformations
Problem to solve:
Given a sample of (complex) numbers xn cal-
culate

Xk =
N−1∑
n=0

xne2πkn/N

I Like this algorithm of complexity O(n2)

I FFT algorithm = way to bring
complexity to O(n log n) or even below

Implementation in Python:
I Cooley-Tukey algorithm (breaking down

of the problem recursively into smaller
samples leading to the reusability of
calculations)

I Dedicated algorithms for samples of
real numbers (rfft)

I Or in case of cosine or sine series
Xk =

∑N−1
n=0 xn cos 2πkn/N (dct)

Xk =
∑N−1

n=0 xn sin 2πkn/N (dst)

June 27, 2018 Analytics – Christian Elsasser Page 17

Department of Physics

Fourier Transformation
Problem to solve:

I Calculate for a given function f (t) and
frequency ω the amplitude

A(ω) =
∫ ∞
−∞

dte−iωt f (t)

I Depending on the convention you might
have an additional factor (2π)−1/2.

I Idea: Evaluate the above integral
numerically.

Integration in Python:
I quad as most generic integration

algorithm based on QUADPACK (also
available for multi-dimensional
problems)

I It allows to indicated necessary
precision.

I Options to indicate singularities
I Options to have a weight function w i.e.

I =
∫ b

a dxf (x)w(x)
I Also methods available to apply

Trapezoidal and Simpsons rules as well
as Romberg’s method.

June 27, 2018 Analytics – Christian Elsasser Page 18

Department of Physics

Advanced Python Modules
We omitted any modules with a large and specific purpose→ otherwise you would sit here
tomorrow

Left to the interested audience to explore them further
I NLTK (www.nltk.org)→ Natural language processing
I scikit-learn (scikit-learn.org)→ Machine learning
I scikit-image (scikit-image.org)→ Image processing and analysis
I . . .

Rapidly growing and improving landscape of python modules, but with still some “whitish” spots
(e.g. time series)⇒ Reflection of available alternatives?

June 27, 2018 Analytics – Christian Elsasser Page 19

http://www.nltk.org
http://scikit-learn.org
http://scikit-image.org

Department of Physics

Conclusion

I Scipy together with Numpy offers a
large number of fundamental tools for
your everyday work in science and
beyond

I Take the time to understand the content
of the package . . .

I . . . to avoid a reinvention of the wheel

I Many specialised modules are based
on the Scipy/Numpy foundation.

I We leave it to the interested audience
to explore them further:

I NLTK (www.nltk.org) → Natural
language processing

I scikit-learn (scikit-learn.org) →
Machine learning

I scikit-image (scikit-image.org) →
Image processing and analysis

I . . .

Other relevant (fundamental) libraries will be discussed on Friday by Andreas together with the
topic of visualisation.

June 27, 2018 Analytics – Christian Elsasser Page 20

http://www.nltk.org
http://scikit-learn.org
http://scikit-image.org

