

Scientific Programming: Analytics Tools and Visualisation

Scientific Programming with Python Christian Elsasser

Based partially on a talk by Stéfan van der Walt

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

The Ecosystem of Homo Python Scientificus

Table of Contents

- ► Linear Algebra with Numpy
- Scipy
 - Basic Structure
 - Three Examples
- ► Interlude: Nice tools
 - datetime
 - requests & BeautifulSoup
- Visualisation
 - matplotlib
 - seaborn
 - bokeh
 - folium

A Few Technical Remarks

If you want to follow directly the code used in the lecture

- ► Download the code from the course homepage (Lecture 7)
- Start the virtual environment
 - \$. venv/bin/activate (from the home directory)
- Create a kernel for the notebook with the virtual environment \$ python3 -m ipykernel install --user --name=ve3
- Unzip the file
 - \$ tar zxvf material_analytics_vis_lec.tar.gz
- Enter the created directory
 - \$ cd material_analytics_vis_lec
- ... and start the notebook
 - \$ ipython3 notebook

Fundamental Tools – SciPy & NumPy

More than Arrays – NumPy and Matrices

NumPy offers a matrix framework for linear algebra calculations, allowing to defining one- and two-dimensional arrays as matrices

Matrices

```
>>> a = np.matrix([[1,2],[3,4]])
```

```
>>>> b = np.matrix(np.random.rand(4))
```

```
>>> c = np.matrix(np.random.rand(3,3))
```

One-dimensional arrays \rightarrow 1 \times *n* matrices, *i.e.* row vectors

Matrices have some additional functionality (e.g. inverse: a.I, hermitian: a.H)

Linear Algebra with SciPy – Bringing High-Performance Libraries to the Table

Light version of SciPy's linear algebra implementation at np.linalg

Examples of available functionality:

np.linalg.cholesky	np.linalg.det	np.linalg.eig
np.linalg.eigh	np.linalg.qr	np.linalg.svd

The functions are wrappers of the LAPACK linear algebra package

More functionality is embedded in the full SciPy implementation scipy.linalg, e.g.

Matrix Exponential

```
>>> a = np.matrix([[1,2],[3,4]])
>>> scipy.linalg.expm(a)
```


SciPy – or Where the Fun Really Starts

- Offering a large number of functionality for numerical computation
 - scipy.linalg \rightarrow Linear Algebra
 - scipy.optimize \rightarrow Numerical optimisation (incl. least square)
 - scipy.integrate \rightarrow Numerical integration
 - $scipy.stats \rightarrow Statistics$ including a large set of distributions
 - more at http://docs.scipy.org/doc/scipy/reference/
- Eco-system of more advanced packages for data analysis, e.g.
 - scikits.learn: Machine-learning algorithms
 - scikits.image: Image processing
 - pytables: data structure (based on HDF5)
 - **۰**...

Remark: import scipy as sp only imports the most basic tools \Rightarrow from scipy import stats

Three SciPy examples: Optimisation, Distributions and Fast-Fourier Transform

0.8

0.4

Sample distributions

Find the minimum

- Also for n-dim functions
- Basic functionality for least-square or maximumlikelihood estimation
- Large variety of distributions
- Be careful with the order of parameters

Get the spectrum

- ► Fast frequency analysis
- Deals with the full spectrum (complex frequency values)

Time & Date

2

datetime - Easy Handling of Time

https://docs.python.org/3.4/library/datetime.html

- Collection of classes to manipulate date and time
- Most important class datetime to represent date (year, month, day) and time (hour, minute, second, millisecond)
- ► strptime and strftime to load and dump dates from and to a string, respectively → format defined via standard time fields (*i.e.* %Y for four-digit year, %b for three-letter month abbreviation, etc. using locale information)
- ► Timezone info encodable via abstract base class of tzinfo, e.g. pytz ⇒ No excuse for unannotated timestamps
- ► timedelta as difference between datetime objects allowing to make calculations

Web Tools

requests / urllib - The Web at Your Fingertip

http://docs.python-requests.org/en/master/ https://docs.python.org/3.4/library/urllib.html

requests

- User-friendly module for HTTP functionality
- ► POST and GET (and the others) functionality (→ extraction of web site content, download of files, low-level handling of APIs, etc.)
- Possiblity to specify sessions (requests.Session)
- ► Submission of additional parameters to specifiy proxy, authentification, etc.

urllib

- ► For some functionalities we need to fall back to urllib
 - Download files easily
 - Retrieve data from files iteratively

BeautifulSoup - Navigating through HTML and XML trees

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

- Parsing of HTML or XML files into a tree structure
- ► Selection of sections based on tags including their attributes (class, id, name, etc.) possible
- ► Also extraction of attributes possible (*e.g.* href field for HTML links)
- ► parent, children, siblings methods allow to navigate in the structure of the document

Visualisation

Visualisation as well as Content Matters

Visualisation Options in Python

Matplotlib

- Started as emulation for MATLAB
- Basic plotting also in more than one dimension

Seaborn

- Collection of more complex plots
- Based on Matplotlib

bokeh

- Web publishable graphics
- Large variety of usable interactions

Folium

- Python interface to leaflet (maps)
- Plotting of geo data

Advanced Python Modules

We omitted any modules with a large and specific purpose \rightarrow otherwise you would sit here tomorrow

Left to the interested audience to explore them further

- $\blacktriangleright \ \text{NLTK} \ (www.nltk.org) \rightarrow Natural \ language \ processing$
- scikit-learn (scikit-learn.org) \rightarrow Machine learning
- \blacktriangleright scikit-image (scikit-image.org) \rightarrow Image processing and analysis

► ...

Rapidly growing and improving landscape of python modules, but with still some "whitish" spots $(e.g. \text{ time series}) \Rightarrow$ Reflection of available alternatives?

Conclusion

- Large variety of modules (growing every day), not just data analysis, but also for web interface, etc.
- Many packages targeting APIs
 - Twitter $\rightarrow \texttt{tweepy}$
 - $\blacktriangleright \text{ Yandex translator} \rightarrow \texttt{yandex.translate}$
 - ▶ Quandl \rightarrow quandl
 - \Rightarrow Do not reinvent the wheel!
- pip is your friend and helper
- Learning by doing!
- ... But knowing what functionalities are available and their potential is half the battle!