
Hardware Speedup, Scientific Programming with Python 2017 1

Department of Physics Scientific Programming with Python

Hardware Speedup September 6, 2017

Exercises

Exercise 1: Optimizing arithmetic expressions

1. Use script poly.py to check how much time it takes to evaluate the next polyno-
mial:
y = .25*x**3 + .75*x**2 - 1.5*x - 2

with x in the range [-1, 1], and with 10 millions points.

• Set the ‘what’ parameter to “numexpr” and take note of the speed-up versus
the “numpy” case. Why do you think the speed-up is so large?

2. The expression below:
y = ((.25*x + .75)*x - 1.5)*x - 2

represents the same polynomial than the original one, but with some interesting
side-effects in efficiency. Repeat this computation for numpy and numexpr and get
your own conclusions.

• Why do you think numpy is doing much more efficiently with this new ex-
pression?

• Why the speed-up in numexpr is not so high in comparison?

• Why numexpr continues to be faster than numpy?

3. The C program poly.c does the same computation than above, but in pure C.
Compile it like this:
gcc -O3 -o poly poly.c -lm

and execute it.

• Why do you think it is more efficient than the above approaches?

Exercise 2: Evaluating transcendental functions

4. Activate the evaluation of the sin(x)**2+cos(x)**2 expression in poly.py, a
function that includes transcendental functions and run the script.

• Why the difference in time between NumPy and Numexpr is so small?

Christian Elsasser September 6, 2017

Hardware Speedup, Scientific Programming with Python 2017 2

5. In poly.c, comment out expression 1) (around line 51) and uncomment expression
3) (the transcendental function).

• Do this pure C approaches go faster than the Python-based ones?

• What would be needed to accelerate the computations?

Exercise 3: Using Numba

The goal of Numba is to compile arbitrarily complex Python code on-the-flight and
executing it for you. It is fast, although one should take in account the compile times.

6. Edit poly-numba.py and look at how numba works.

• Run several expressions and determine which method is faster. What is the
compilation time for numba and how it compares with the execution time?

• Raise the amount of data points to 100 millions. What happens?

Exercise 4: Parallelism

7. Be sure that you are on a multi-processor machine and activate the:
y = ((.25*x + .75)*x - 1.5)*x - 2

expression in poly-mp.py. Repeat the computation for both numpy and numexpr
for a different number of processes (numpy) or threads (numexpr)
(pass the desired number as a parameter to the script).

• How does the efficiency scale?

• Why do you think it scales that way?

• How is the performance compared with the pure C computation?

8. With the previous examples, compute the expression:
y = x

That is, do a simple copy of the ‘x’ vector. What is the performance that you are
seeing?

• How does it evolve when using different threads? Why it scales very similarly
than the polynomial evaluation?

• Could you have a guess at the memory bandwidth of this machine?

Christian Elsasser September 6, 2017

