
Hardware-assisted speed-up techniques

Scientific Programming with Python

Roman Gredig

Universität Zürich

1 / 46

1 / 46

Overview
Motivation

The Data Access Issue

Why modern CPUs are starving?

Caches and the hierarchical memory model

Techniques for fighting data starvations

High Performance Libraries

Based on the lecture slides of

Francesc AltedFrancesc Alted

Advanced Scientific Programming in Python

Summer School 2013, Zurich

This work is licensed under the

Creative Commons Attribution-ShareAlike 3.0 License.

2 / 46

https://creativecommons.org/licenses/by-sa/3.0/

Motivation

3 / 46

3 / 46

Computing a Polynomial
We want to compute the polynominal:

y = 0.25x + 0.75x − 1.5x − 2

in the range [-1,1], with granularity of 10 million points on the x-axis

… and we want to do that as FAST as possible …

3 2

4 / 46

use NumPy
NumPy is a powerful package that let you perform calculations with Python,

but at C speed:

(see Christian's talks)

import numpy as np

N = 10*1000*1000

x = np.linspace(-1, 1, N)

y = .25*x**3 + .75*x**2 - 1.5*x - 2

That takes around 0.86 sec on our machine (Intel Core i5-3380M CPU @

2.90GHz).

How to make it faster?

5 / 46

’Quick & Dirty’ Approach: Parallelize
The problem of computing a polynomial is “embarrassingly”
parallelizable: just divide the domain to compute in N chunks and
evaluate the expression for each chunk.

This can be easily implemented in Python by, for example, using the
multiprocessing module. See poly-mp.py script.

Using 2 cores, the 0.86 sec is slowed down to 0.88 sec! WTF?

Why did i buy this super-duper quad-core i7 HT CPU for?
(except for CS of course)

6 / 46

Another (Much Easier) Approach: Factorize
The NumPy expression:
(I) y = .25*x**3 + .75*x**2 - 1.5*x - 2 can be rewritten as:
(II) y = ((.25*x + .75)*x - 1.5)*x - 2

With this, the time goes from 0.86 sec to 0.107 sec, which is much faster
(8x) than using two processors with the multiprocessing approach (0.88
sec).

Give optimization a chance before parallelizing!

7 / 46

Numexpr Can Compute Expressions Way Faster
Numexpr is a JIT compiler, based on NumPy, that optimizes the evaluation of

complex expressions. Its use is easy:

import numpy as np

import numexpr as ne

N = 10*1000*1000

x = np.linspace(-1, 1, N)

ne.set_num_threads(1) # use only one thread/cpu

y = ne.evaluate('.25*x**3 + .75*x**2 - 1.5*x - 2')

That takes around 0.059 sec to complete, which is 15x faster than the original

NumPy expression (0.86 sec).

8 / 46

Fine-tune Expressions with Numexpr
Numexpr is also sensible to computer-friendly expressions like:
(II) y = ((.25*x + .75)*x - 1.5)*x - 2

Numexpr takes 0.046 sec for the above (0.059 sec were needed for the
original expression, that’s a 28% faster)

9 / 46

Using Multiple Threads with Numexpr
Numexpr accepts using several processors:

import numpy as np

import numexpr as ne

N = 10*1000*1000

x = np.linspace(-1, 1, N)

ne.set_num_threads(2)

y = ne.evaluate('((.25*x + .75)*x - 1.5)*x - 2')

That takes around 0.029 sec to complete, which is a 60% faster than using a

single processor (0.046 sec).

10 / 46

Summary and Open Questions
 1 core 1 core 2 cores 2 cores Parallel speedup Parallel speedup

NumPy (I) 0.867 0.887 0.98x

NumPy (II) 0.107 0.484 0.22x

Numexpr(I) 0.059 0.034 1.74x

Numexpr(II) 0.046 0.029 1.59x

If all the approaches perform the same computations, all in C space, why
the wild differences in performance?

Why the different approaches do not scale similarly in parallel mode?

 (I) y = .25*x**3 + .75*x**2 - 1.5*x - 2

(II) y = ((.25*x + .75)*x - 1.5)*x - 2

11 / 46

A First Answer: Power Expansion and Performance
Numexpr expands the expression:

0.25*x**3 + 0.75*x**2 + 1.5*x - 2

to:

0.25*x*x*x + 0.75*x*x + 1.5*x - 2

so, no need to use the expensive pow()

12 / 46

One (Important) Remaining Question
Why numexpr can execute this expression:

((0.25x + 0.75)x + 1.5)x - 2

more than 2x faster NumPy?

13 / 46

One (Important) Remaining Question
Why numexpr can execute this expression:

((0.25x + 0.75)x + 1.5)x - 2

more than 2x faster NumPy?

By making a more efficient use of the memory resource

14 / 46

Quote Back in 1993
“We continue to benefit from tremendous increases in the raw speed of

microprocessors without proportional increases in the speed of memory. This

means that ’good’ performance is becoming more closely tied to good memory

access patterns, and careful re-use of operands.”

“No one could afford a memory system fast enough to satisfy every (memory)

reference immediately, so vendors depends on caches, interleaving, and other

devices to deliver reasonable memory performance.”

– Kevin Dowd, after his book “High Performance Computing”,

O’Reilly & Associates, Inc, 1993

15 / 46

Quote Back in 1996
“Across the industry, today’s chips are largely able to execute code faster than

we can feed them with instructions and data. There are no longer

performance bottlenecks in the floating-point multiplier or in having only a

single integer unit. The real design action is in memory subsystems, caches,

buses, bandwidth, and latency.”

“Over the coming decade, memory subsystem design will be the only

important design issue for microprocessors.”

– Richard Sites, after his article “It’s The Memory, Stupid!”,

Microprocessor Report, 10(10),1996

16 / 46

CPU vs. Memory Cycle Trend

http://www.fusionio.com/white-papers/taming-the-power-hungry-data-center

17 / 46

http://www.fusionio.com/white-papers/taming-the-power-hungry-data-center

Book in 2009

18 / 46

The CPU Starvation Problem
Known facts (in 2013):

Memory latency is much slower (between 250x and 500x) than processors
and has been an essential bottleneck for the past fifteen years.

Memory throughput is improving at a better rate than memory latency,
but it is also much slower than processors (between 30x and 100x).

The result is that CPUs in our current computers are suffering from a serious

starvation data problem:

They could consume (much!) more data than the system can possibly

deliver.

19 / 46

What Is the Industry Doing to Alleviate CPU Starvation?
They are improving memory throughput: cheaper to implement (more
data is transmitted on each clock cycle).

They are adding big caches in the CPU dies (i.e. the “chip”).

20 / 46

Why Is a Cache Useful?
Caches are closer to the processor (normally in the same die), so both the
latency and throughput are improved.

However: the faster they run the smaller they must be.

They are effective mainly in a couple of scenarios:

Time locality: when the dataset is reused.

Spatial locality: when the dataset is accessed sequentially.

21 / 46

Time Locality
Parts of the dataset are reused:

22 / 46

Space Locality
Dataset is accessed sequentially

23 / 46

The Hierarchical Memory Model
Introduced by industry to cope with CPU data starvation problems.

It consists in having several layers of memory with different capabilities:

Lower levels (i.e. closer to the CPU) have higher speed, but reduced

capacity. Best suited for performing computations.

Higher levels have reduced speed, but higher capacity. Best suited for

storage purposes.

24 / 46

The Primordial Hierarchical Memory Model
Two level hierarchy:

25 / 46

The 2000’s Hierarchical Memory Model
Four level hierarchy:

26 / 46

The Current Hierarchical Memory Model
Six level (or more) hierarchy:

27 / 46

Once Upon A Time…
In the 1970s and 1980s many computational scientists had to learn
assembly language in order to squeeze all the performance out of their
processors.

"written in assembler" used to be an advertisement

In the good old days, the processor was the key bottleneck.

28 / 46

Nowadays…
Every computer scientist must acquire a good knowledge of the
hierarchical memory model (and its implications) if they want their
applications to run at a decent speed (i.e. they do not want their CPUs to
starve too much).

Memory organization has become now the key factor for optimizing.

29 / 46

The Blocking Technique
When you have to access memory, get a contiguous block that fits in the CPU

cache, operate upon it or reuse it as much as possible, then write the block

back to memory:

30 / 46

Understand NumPy Memory Layout
Being a a squared array (4000x4000) of doubles, we have:

Summing up column-wise:

a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 μs

NumPy arrays are ordered row-wise (C convention) by default

31 / 46

Vectorize Your Code
Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

def dot_naive(a,b):

 c = np.zeros((nrows, ncols), dtype='f8')

 for row in xrange(nrows):

 for col in xrange(ncols):

 for i in xrange(nrows):

 c[row,col] += a[row,i] * b[i,col]

 return c

Vectorized matrix-matrix multiplication: 20 s (64x faster)

def dot(a,b):

 c = np.empty((nrows, ncols), dtype='f8')

 for row in xrange(nrows):

 for col in xrange(ncols):

 c[row, col] = np.sum(a[row] * b[:,col])

 return c

32 / 46

Interlude: Resolving More Open Questions

33 / 46

NumPy And Temporaries
Computing "a*b+c" with NumPy. Temporaries goes to memory.

34 / 46

Numexpr Avoids (Big) Temporaries
Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

35 / 46

Mysteries Solved Now
 1 core 1 core 2 cores 2 cores Parallel speedup Parallel speedup

NumPy (I) 0.867 0.887 0.98x

NumPy (II) 0.107 0.484 0.22x

Numexpr(I) 0.059 0.034 1.74x

Numexpr(II) 0.046 0.029 1.59x

36 / 46

Numba: Overcoming numexpr Limitations
Numba is a JIT that can translate a subset of the Python language into
machine code

For a single thread, it can achieve similar or better performance than
numexpr, but with more flexibility

The costs of compilation can be somewhat high though

Free software (MIT-like license).

37 / 46

Numba Example: Computing the Polynomial
from numba import autojit

import numpy as np

N = 10*1000*1000

x = np.linspace(-1, 1, N)

y = np.empty(N, dtype=np.float64)

@autojit

def poly(x, y):

 for i in range(N):

 y[i] = ((0.25*x[i] + 0.75)*x[i] + 1.5)*x[i] - 2

poly(x, y) # run through Numba!

print(y)

38 / 46

Times for Computing the Polynomial
 1 core 1 core 2 cores 2 cores Parallel speedup Parallel speedup

NumPy (I) 0.867 0.887 0.98x

NumPy (II) 0.107 0.484 0.22x

Numexpr(I) 0.059 0.034 1.74x

Numexpr(II) 0.046 0.029 1.59x

Numba (I) 0.731 - -

Numba (II) 0.037 - -

Compilation time for Numba: 0.321 sec

39 / 46

Steps To Accelerate Your Code
In order of importance:

Make use of memory-efficient libraries (many of the current bottlenecks
fall into this category).

Apply the blocking technique and vectorize your code.

Parallelize using:

Multi-threading (using Cython).

Multi-processing (via the multiprocessing module in Python)

Explicit message passing (IPython, MPI via mpi4py).

Parallelization is usually a pretty complex thing to program, so let’s use

existing libraries first!

40 / 46

Summary
These days, you should understand the hierarchical memory model if you
want to get decent performance.

Leverage existing memory-efficient libraries for performing your
computations optimally.

Do not blindly try to parallelize immediately. Do this as a last resort!

41 / 46

More Info
Ulrich Drepper:
What Every Programmer Should Know About Memory
RedHat Inc.,2007

Bruce Jacob:
The Memory System
Morgan & Claypool Publishers, 2009 (77 pages)

Francesc Alted
Why Modern CPUs Are Starving and What Can Be Done about It
Computing in Science and Engineering, March 2010

42 / 46

http://people.redhat.com/drepper/cpumemory.pdf
http://dx.doi.org/10.2200/S00201ED1V01Y200907CAC007
http://dx.doi.org/10.1109/MCSE.2010.51

Acknowledgment

99% of the slides are copied from Francesc Alted

43 / 46

https://python.g-node.org/python-summerschool-2013/starving_cpu

Extra

44 / 46

44 / 46

Some High Performance Libraries
BLASBLAS: Routines that provide standard building blocks for performing
basic vector and matrix operations.

ATLASATLAS: Memory efficient algorithms as well as SIMD algorithms so as to
provide an efficient BLAS implementation.

MKLMKL: (Intel’s Math Kernel Library): Like ATLAS, but with support for
multi-core and fine-tuned for Intel architecture. Its VML subset computes
basic math functions (sin, cos, exp, log...) very efficiently.

NumexprNumexpr: Performs relatively simple operations with NumPy arrays
without the overhead of temporaries. Can make use of multi-cores.

NumbaNumba: Can compile potentially complex Python code involving NumPy
arrays via LLVM infrastructure.

45 / 46

46 / 46

