
Department of Physics

Need for Speed –
Python meets C/C++
Scientific Programming with Python

Christian Elsasser

Based partially on a talk by Stéfan van der Walt

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

June 8, 2016 Page 1

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Department of Physics

Python vs. C/C++

[xkcd]

I Python is nice, but by construction slow . . .
I . . . therefore interfacing it with C/C++ (or something similar, e.g. if you

don’t feel too young to use Fortran)

June 8, 2016 Python meets C/C++ Page 2

http://xkcd.com/353

Department of Physics

Python vs. C/C++

Speed

Ea
se

 to
 u

se
/F

le
xi

bi
lit

y

Fortran

Python

C++...

Cython
SWIG
(boost::python)
(ctypes)

I Python is nice, but by construction slow . . .
I . . . therefore interfacing it with C/C++ (or something similar, e.g. if you

don’t feel too young to use Fortran)
June 8, 2016 Python meets C/C++ Page 2

Department of Physics

Table of Contents

I Introduction
I Why should I care?
I When should I consider something else?

I cython – a hybrid programming language/compiler
I Speed-up examples
I Standard Template Library
I Classes
I Exceptions

I SWIG (and other wrappers)

June 8, 2016 Python meets C/C++ Page 3

Department of Physics

C++ on one Slide www.cplusplus.com and www.learncpp.com

I C++ is an (if not the) object-oriented programming language (like
Python)

I including inheritance (like Python does in a slightly different way)
I . . . operator overloading (like Python)
I It has a rich variety of libraries (like Python)
I It can raise exceptions (like Python)
I It requires declaration of variables (not like Python)
I It is (usually) a compiled language! (not like Python)

⇒ C++ and Python share a lot of similarities!

C is just the non-object-oriented version of C++ (minus some other
missing features, e.g. exceptions)

June 8, 2016 Python meets C/C++ Page 4

http://www.cplusplus.com
http://www.learncpp.com

Department of Physics

A Few Words of Warning (I)
Bad code stays bad code!

June 8, 2016 Python meets C/C++ Page 5

Department of Physics

A Few Words of Warning (II)
Do not expect miracles! – You have to master two languages!

June 8, 2016 Python meets C/C++ Page 6

Department of Physics

Python’s C API
. . . or who the hell thinks this is useful?

I The Python C API (application programming interface) allows to build
C libraries that can be imported into Python
(https://docs.python.org/3/c-api/) . . .

I . . . and looks like this:

Pure Python

»»» a = [1,2,3,4,5,6,7,8]
»»» sum(a)
36

June 8, 2016 Python meets C/C++ Page 7

https://docs.python.org/3/c-api/

Department of Physics

Python’s C API

Python C can understand

sum_list(PyObject *list) {
int i, n;
long total = 0;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */

for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

June 8, 2016 Python meets C/C++ Page 7

Department of Physics

C/C++ in Python: Not a New Thing

NumPy’s C API

ndarray typedef struct PyArrayObject {
PyObject_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject ;

⇒ Several Python “standard” libraries are using C/C++ to speed things up

June 8, 2016 Python meets C/C++ Page 8

Department of Physics

First Solution: Cython
(http://cython.org)

I Hybrid programming language combining Python and an interface for
using C/C++ routines.

I . . . or a static compiler for Python allowing to write C/C++ extensions
for Python and heavily optimising this code.

I It is a successor of the Pyrex language.

⇒ Every valid Python statement is also valid when using cython.

⇒ Code needs to be compiled→ Time!
I Translates you “C-enhanced” Python code into C/C++ code using the

C API

Cython (v0.21.1) understands Python 3, and also most of the
features of C++11

June 8, 2016 Python meets C/C++ Page 9

http://cython.org

Department of Physics

Workflow

.pyx .c
.cpp .o .so

lib

cython 'gcc' 'gcc'

Shared object (<name>.so) can be imported into Python with import name

June 8, 2016 Python meets C/C++ Page 10

Department of Physics

Requirements

I cython
The latest version can be downloaded from http://cython.org.

I C/C++ compiler, e.g. gcc/g++/clang (or for Windows: mingw)

Mille viae ducunt hominem per saecula ad compilorem!

Linux: usually already installed
(Ubuntu/Debian: sudo apt-get
install build-essential)

MacOS X: XCode command line tools

Windows: Download of MinGW from http://
mingw.org and install it

June 8, 2016 Python meets C/C++ Page 11

http://cython.org
http:// mingw.org
http:// mingw.org

Department of Physics

Benchmark One

Fibonacci (Pure Python)

def fib(n):
a,b = 1,1
for i in range(n):
a,b = a+b,a

return a

June 8, 2016 Python meets C/C++ Page 12

Department of Physics

Benchmark One

Fibonacci (Cython)

def fib(int n):
cdef int i,a,b
a,b = 1,1
for i in range(n):
a,b = a+b,a

return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

June 8, 2016 Python meets C/C++ Page 12

Department of Physics

Benchmark One

Fibonacci (Cython)

def fib(int n):
cdef int i,a,b
a,b = 1,1
for i in range(n):
a,b = a+b,a

return a

I Type declaration (cdef)⇒ Python/Cython knows what to expect

I A few (simple) modifications can easily change the CPU time by a
factor of O(100)

June 8, 2016 Python meets C/C++ Page 12

Department of Physics

Compiling Cython Code (The hard way)
To get to importable Python extensions from Cython Code three steps are
required:

1. Compile Cython code to C/C++ code
cython <name>.pyx → creates <name>.c

2. Create object files
gcc -O2 -fPIC -I<path_to_python_include> -c <name>.c -o
<name>.o → creates <name>.o without linking

3. Compile shared object (i.e. library)
gcc [options] -L<path_to_python_library> <name>.o -o
<name>.so → creates <name>.so

Module with <name> ready to be imported (i.e. import <name>)

Remarks:
I If using C++ code, cython needs the option -+ and gcc→ g++
I options are for MacOS X -bundle -undefined dynamic_lookup

and for Debian -shared
June 8, 2016 Python meets C/C++ Page 13

Department of Physics

Compiling Cython Code (The easy way)
Support via the distutils (distribution utilities) package in building and
installing Python modules⇒ applicable for cython

setup.py

from distutils.core import setup
from Cython.Build import cythonize

setup(ext_modules = cythonize([<list of .pyx files>],
language="c++" # optional
)

)

Command python setup.py build_ext --inplace creates for each
.pyx file a .c/.cpp file, compiles it to an executable (in the build directory
of the corresponding OS/architecture/Python version) and compiles a .so
file (or a .pxd if you are using Windows)

Further options for cythonize via help explorable
June 8, 2016 Python meets C/C++ Page 14

Department of Physics

How Performant is My Code?
cython -a/--annotate <name>.pxy→ additional HTML file

I bad performance→ yellow marking
I allows to investigate code and to learn about performance tuning

I Not every yellow part can be improved!
June 8, 2016 Python meets C/C++ Page 15

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integrate

from math import sin,exp

def f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)

return s*dx
June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Python layer (expensive)

integrate(a,b,N)

f(x)

C layer (cheap)

‘_pyx_integrate’(a,b,N)

for (i=0; i<N; i++)

‘_pyx_f’(x)
sum updated

June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integrate

from math import sin,exp

cdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)

return s*dx
June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integrate

from math import sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)

return s*dx
June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integrate

from libc.math cimport sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef int i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)

return s*dx
June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

Integrate

from libc.math cimport sin,exp

cpdef double f(double x):
return sin(x)*exp(-x)

def integrate(double a,double b,int N):
cdef double dx,s
cdef Py_ssize_t i
dx = (b-a)/N
s = 0.0
for i in range(N):
s += f(a+(i+0.5)*dx)

return s*dx
June 8, 2016 Python meets C/C++ Page 16

Department of Physics

Benchmark Two
Integral of f (x) = sin x · e−x between 0 and π
⇒ Exact result: (e−π + 1)/2 = 0.521607

I Return values of function can be specified via the key word cdef
I cpdef⇒ function also transparent to Python itself (no performance

penalty)

I C/C++ library can be imported via from libc/libcpp.<module>
cimport <name> (see later)

I Using C++ functions can lead to a huge speed-up

June 8, 2016 Python meets C/C++ Page 16

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library
containters (e.g. std::vector, std::map, etc.)

Object holders with specific memory access structure, e.g.
I std::vector allows to access any element
I std::list only allows to access elements via iteration
I std::map represents an associative container with a key and a

mapped values

June 8, 2016 Python meets C/C++ Page 17

Department of Physics

STL Containers
An often used feature of C++ are the Standard Template Library
containters (e.g. std::vector, std::map, etc.)

. . . and cython knows how to treat them!

Python −→ C++ −→ Python

iterable → std::vector → list
iterable → std::list → list
iterable → std::set → set

iterable (len 2) → std::pair → tuple (len 2)
dict → std::map → dict

bytes → std::string → bytes

June 8, 2016 Python meets C/C++ Page 17

Department of Physics

STL Containers
Let’s try it!

June 8, 2016 Python meets C/C++ Page 17

Department of Physics

STL Containers
A few remarks!

I iterators (e.g. it) can be used⇒ dereferencing with
dereference(it) and incrementing/decrementing with
preincrement (i.e. ++it), postincrement (i.e. it++), predecrement
(i.e. --it) and postdecrement (i.e. it--) from cython.operator

I Be careful with performance! ⇒ performance lost due to shuffling of
data

I More indepth information can be found directly in the corresponding
sections of the cython code
https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

I C++11 containters (like std::unordered_map) are partially
implemented

June 8, 2016 Python meets C/C++ Page 17

https://github.com/cython/cython/tree/master/Cython/Includes/libcpp

Department of Physics

Exceptions/Errors
In terms of exception and error handling two different cases need to be
considered:

I Raising of a Python error in cython code⇒ return values make it
impossible to raise properly Python errors (Warning message, but
continuing)

I Handling of error codes from pure C functions
I Raising of a C++ exception in C++ code used in cython⇒ C++

exception terminates – if not caught – program

June 8, 2016 Python meets C/C++ Page 18

Department of Physics

Errors in Python

Python Error

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning

June 8, 2016 Python meets C/C++ Page 19

Department of Physics

Errors in Python

Python Error

cpdef int raiseError():
raise RuntimeError("A problem")
return 1

⇒ Just prints a warning

Python Error

cpdef int raiseError() except *:
raise RuntimeError("A problem")
return 1

⇒ Propagates the RuntimeError

June 8, 2016 Python meets C/C++ Page 19

Department of Physics

Errors in C
C does not know exceptions like Python or C++. If errors should be
caught, it is usually done via dedicated return values of functions which
cannot appear in a regular function call.

Use the except statement to tell cython about this value

C Error
cpdef int raiseException() except -1:

return -1

⇒ allows to indicate error codes from C⇒ raises SystemError

June 8, 2016 Python meets C/C++ Page 20

Department of Physics

Exceptions in C++

[xkcd]

In cython this is also true for C++ exceptions!

Cython is not able to deal with C++ exceptions in a try’n’except clause!

⇒ But caption in cython and translation to Python exceptions/errors is
possible!

June 8, 2016 Python meets C/C++ Page 21

Department of Physics

Exceptions in C++

C++ −→ Python
bad_alloc → MemoryError
bad_cast → TypeError

domain_error → ValueError
invalid_argument → ValueError
ios_base::failure → IOError

out_of_range → IndexError
overflow_error → OverflowError

range_error → ArithmeticError
underflow_error → ArithmeticError

(all others) → RuntimeError

June 8, 2016 Python meets C/C++ Page 21

Department of Physics

Exceptions in C++
. . . and let Python understand it!

I cdef <C++ function>() except +
⇒ translates a C++ exception into a Python error according to the
previous scheme

I cdef <C++ function>() except +<Python Error>
e.g. MemoryError⇒ translates every thrown C++ exception into a
MemoryError

I cdef <C++ function>() except +<function raising Python
error>⇒ runs <function raising Python error> if the C++
function throws any exception. If <function raising Python
error> does not raise an error, a RuntimeError will be raised.

June 8, 2016 Python meets C/C++ Page 21

Department of Physics

Classes
Classes are a common feature of Python and C++

There are two aspects when dealing with cython:
I Defining classes containing C++ code in cython
I C++ classes integrated into Python

June 8, 2016 Python meets C/C++ Page 22

Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Integrate with classes

cdef class Integrand:
cpdef double evaluate(self,double x) except *:

raise NotImplementedError()

cdef class SinExpFunction(Integrand):
cpdef double evaluate(self,double x):

return sin(x)*exp(-x)

def integrate(Integrand f,double a,double b,int N):
...
s += f.evaluate(a+(i+0.5)*dx)
...

Cython does not know @abstractmethod from the module abc!

June 8, 2016 Python meets C/C++ Page 23

Department of Physics

Defining Classes in Cython
Let’s go back to the integration examples

Integrate with classes

class Poly(Integrand):
def evaluate(self,double x):

return x*x-3*x

integrate(Poly(),0.0,2.0,1000)

⇒ Speed lost with respect to definition in cython, but still faster than a
pure Python implementation

June 8, 2016 Python meets C/C++ Page 23

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.h

namespace shapes {
class Rectangle {
public:

int x0, y0, x1, y1;
Rectangle(int x0, int y0, int x1, int y1);
∼Rectangle(); // destructor
int getLength();
int getHeight();
int getArea();
void move(int dx, int dy);

};
}

June 8, 2016 Python meets C/C++ Page 24

Department of Physics

Integration of C++ Classes
Assuming a C++ class Rectangle

Rectangle.cpp

#include "Rectangle.h"
#include <iostream>

using namespace shapes;

Rectangle::Rectangle(int X0, int Y0, int X1, int Y1) {
x0 = X0;
y0 = Y0;
x1 = X1;
y1 = Y1;
std::cout « "Here I am" « std::endl;}

Rectangle::∼Rectangle() {
std::cout « "Byebye" « std::endl;}

...

June 8, 2016 Python meets C/C++ Page 24

Department of Physics

Integration of C++ Classes
Now exposing it to cython

rect.pyx

distutils: language = c++
distutils: sources = Rectangle.cpp

cdef extern from "Rectangle.h" namespace "shapes":
cdef cppclass Rectangle:

Rectangle(int, int, int, int) except +
int x0, y0, x1, y1
int getLength()
int getHeight()
int getArea()
void move(int, int)

June 8, 2016 Python meets C/C++ Page 24

Department of Physics

Integration of C++ Classes
. . . and using it!

Either in further cython code!

rect.pyx

def tryIt():
cdef Rectangle* r
try:

r = new Rectangle(1,2,3,4)
print("My length is: %f"%r.getLength())
print("My first x-coordinate is: %f"%r.x0)

finally:
del r

June 8, 2016 Python meets C/C++ Page 24

Department of Physics

Integration of C++ Classes
. . . and using it!

Or for creating a Python (wrapper) class!

rect.pyx

cdef class PyRectangle:
cdef Rectangle *thisptr
def __cinit__(self, int x0, int y0, int x1, int y1):

self.thisptr = new Rectangle(x0, y0, x1, y1)
def __dealloc__(self):

del self.thisptr
def getLength(self):

return self.thisptr.getLength()
def getHeight(self):

return self.thisptr.getHeight()
...

June 8, 2016 Python meets C/C++ Page 24

Department of Physics

Automatic Wrappers
. . . since not everybody likes to write lines of error-prone code

I SWIG
I boost::python
I ctypes
I . . .

Goal: creating compilable C/C++ code based on the Python C API

June 8, 2016 Python meets C/C++ Page 25

Department of Physics

SWIG
SWIG: Simplified Wrapper and Interface Generator

I Generic Wrapper for C/C++ to script-like languages (Perl, Ruby,
Tcl,. . .)

I Pretty old – created in 1995 by Dave Beazley
I Current version is 3.0.5

June 8, 2016 Python meets C/C++ Page 26

Department of Physics

SWIG – in a Nutshell
Work flow

.h

.c
.c
.cxx .o .so

lib

swig 'gcc' 'gcc'

.i .py

1. swig creates out of one or several .c/.h files via instructions in the .i
file a wrapper file (.c or .cxx) and a python module (.py)
swig -python -c++/-c <file>.i

June 8, 2016 Python meets C/C++ Page 27

Department of Physics

SWIG – in a Nutshell
Work flow

.h

.c
.c
.cxx .o .so

lib

swig 'gcc' 'gcc'

.i .py

2. Wrapper file is compiled to a shared object (.so) which will be
imported by the python module (low- to high-level-translation)

June 8, 2016 Python meets C/C++ Page 27

Department of Physics

SWIG – in a Nutshell
Main configuration with interface (.i) files

I tells which (header) file(s) contains the C/C++ code to wrap
I defines some special data types (e.g. std::vector<...>)
I handles some additional configuration (e.g. exception/error

translation)

June 8, 2016 Python meets C/C++ Page 27

Department of Physics

SWIG – in a Nutshell

Interface file
%module geom // name of the module
...
// things swig should know about
%include "Shape.h"
%include "Rectangle.h"
...
// things that should be put into the header of the wrapper
file (.c/.cxx)
%{
#include "Shape.h"
#include "Rectangle.h"
%}

June 8, 2016 Python meets C/C++ Page 27

Department of Physics

SWIG – in a Nutshell

Distutils (setup.py)

from distutils.core import setup, Extension

extension_mod = Extension("_<name>",
["<name_wrap>.cxx",
"<source1>.cpp",
"<source2>.cpp","..."],
language="c++")

setup(name = "_<name>", ext_modules=[extension_mod])

I To be build extension needs a different name than the module set up
by switch⇒ Avoid name conflicts

I Language option only for C++
I python setup.py build_ext --inplace

June 8, 2016 Python meets C/C++ Page 27

Department of Physics

A Few Remarks about SWIG

I SWIG ≈ performance loss with respect to cython
I If SWIG works: ,
I If it does not: /
I . . . and therefore you can lose a lot of time with special problems
I It is not always optimal to expose the whole class to Python

June 8, 2016 Python meets C/C++ Page 28

Department of Physics

Conclusion

I Interfacing Python with C/C++ is – or better – can be a way to create
powerful code

I cython and SWIG are two nice tools to do so
I . . . but always make the interfacing maintainable/useful/etc. i.e. not a

British train door

June 8, 2016 Python meets C/C++ Page 29

Department of Physics

The End!

Runs per 'Compilation'

Ti
m

e

Compilation

Python

Python + C/C++

June 8, 2016 Python meets C/C++ Page 30

Department of Physics

The End!

[xkcd]

June 8, 2016 Python meets C/C++ Page 30

Department of Physics

References

1. Stéfan van der Walt, Speeding up scientific Python code using Cython,
Advanced Scientific Programming in Python, 2013 (Zurich) & 2014 (Split)

2. Stefan Behnel et al., Cython tutorial, Proceedings of the 8th Python in Science
Conference (SciPy 2009)
⇒ based on older cython version, but the main reference of cython

3. Dave Beazley, Swig Master Class, PyCon’2008
4. http://docs.cython.org/src/tutorial/

5. http://www.swig.org

June 8, 2016 Python meets C/C++ Page 31

http://docs.cython.org/src/tutorial/
http://www.swig.org

Department of Physics

Backup

Department of Physics

Fortran meets Python
The f2py compiler (http://docs.scipy.org/doc/numpy-dev/f2py/)
offers – in a similar way as cython – the possibility to generate extension
modules for Python from Fortran code.

f2py -c -m <module name> <fortran file>.f/.f90 builds from the
code in <fortran file>.f/.f90 a importable module (i.e. shared object)
<module name>.so

Fortran modules and subroutines are exposed to Python on time of the
import of the built module.

The compilation can also be split into a first step generating a signature
file, which is in a second step compiled into the extension module

June 8, 2016 Python meets C/C++ Page 33

http://docs.scipy.org/doc/numpy-dev/f2py/

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc()
defined in except_cy.h

Exception Example 1

cdef extern from ’except_cy.h’
cdef void raiseException() except +

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ OK as raiseException() throws a std::exception→ RuntimeError

June 8, 2016 Python meets C/C++ Page 34

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc()
defined in except_cy.h

Exception Example 2

cdef extern from ’except_cy.h’
cdef void raiseException() except +MemoryError

def tryIt():
try:

raiseException()
except RuntimeError as e:

print(e)

⇒ Not OK as raiseException() throws a std::exception which is
explicitly transformed into a MemoryError

June 8, 2016 Python meets C/C++ Page 34

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc()
defined in except_cy.h

Exception Example 3

cdef extern from ’except_cy.h’
cdef void raiseBadAlloc() except +

def tryIt():
try:

raiseBadAlloc()
except RuntimeError as e:

print(e)

⇒ Not OK as raiseBadAlloc() throws a std::bad_alloc which is
transformed into a MemoryError

June 8, 2016 Python meets C/C++ Page 34

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc()
defined in except_cy.h

Exception Example 4

cdef extern from ’except_cy.h’
cdef void raiseBadAlloc() except +

def tryIt():
try:

raiseBadAlloc()
except MemoryError as e:

print(e)

⇒ OK as raiseBadAlloc() throws a std::bad_alloc which is
transformed into a MemoryError

June 8, 2016 Python meets C/C++ Page 34

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc()
defined in except_cy.h

Exception Example 5

cdef void raise_py_error() except *:
raise MemoryError("Problem")

cdef extern from ’except_cy.h’:
cdef void raiseBadAlloc() except +raise_py_error

def tryIt():
try:

raiseBadAlloc()
except MemoryError as e:

print(e)

⇒ OK as raise_py_error() throws an error
June 8, 2016 Python meets C/C++ Page 34

Department of Physics

Exceptions in C++
Examples
Two C++ functions void raiseException() and void raiseBadAlloc()
defined in except_cy.h

Exception Example 6

cdef void raise_py_error() except *:
pass

cdef extern from ’except_cy.h’:
cdef void raiseBadAlloc() except +raise_py_error

def tryIt():
try:

raiseBadAlloc()
except MemoryError as e:

print(e)

⇒ Not OK as no error is thrown by raise_py_error()
June 8, 2016 Python meets C/C++ Page 34

Department of Physics

Special features: STL Stuff with SWIG

I Dedicated interface files need to be integrated when running SWIG
I . . . and templates for each containers + each content need to be

defined

Interface file
...
%include "std_vector.i"
%include "std_string.i"
...
%template(dVector) std::vector<double>;
%template(rectVector) std::vector<Rectangle*>;
...

June 8, 2016 Python meets C/C++ Page 35

Department of Physics

Special features: Exceptions with SWIG

Interface file
...
%include "exception.i"
...
%exceptionclass ShapeError;
%exception *::whine {

try {

$action

} catch(ShapeError & e) {

ShapeError *ecopy = new ShapeError(e);
PyObject *err = SWIG_NewPointerObj(ecopy, SWIGTYPE_p_ShapeError, 1);
PyErr_SetObject(SWIG_Python_ExceptionType(SWIGTYPE_p_ShapeError), err);
SWIG_fail;

}

}

June 8, 2016 Python meets C/C++ Page 36

Department of Physics

Special features: Overloading
Cython deals the usual way with overloaded methods in C++:

rect.pyx works

cdef extern from "Rectangle.h" namespace "shapes":
...
void move(int, int)
void move(int)

but it cannot happen in a Python wrapper class:

rect.pyx does not work

cdef class PyRectangle:
...
def move(self,dx,dy):

return self.thisptr.move(dx,dy)
def move(self,d):

return self.thisptr.move(d)
June 8, 2016 Python meets C/C++ Page 37

Department of Physics

Special features: Inheritance
As in Python C++ classes can inherit from parent classes including
overriding of methods

C++ classes
class Shape {
public:

...
void virtual printInfo(); // Prints "Shape"

};

class Rectangle : public Shape {
public:

...
void printInfo(); // Prints "Rectangle"

};

June 8, 2016 Python meets C/C++ Page 38

Department of Physics

Special features: Inheritance
Cython can also deal with this feature, but there are two points to keep in
mind:
1. If parent class is also exposed to cython, no redefinition of overridden
methods is required (and also allow→ mis-interpreted as overloading)

C++ classes
cdef extern from "Rectangle.h" namespace "shapes":

cdef cppclass Shape:
Shape() except +
void printInfo()

cdef cppclass Rectangle(Shape):
Rectangle(int, int, int, int) except +
...
void printInfo() # causes problems
...

June 8, 2016 Python meets C/C++ Page 38

Department of Physics

Special features: Inheritance
2. The inheritance can only be transported into wrapper classes if child
classes have the same set of methods as the mother class

C++ classes
cdef class PyObject:

cdef Object* thisptr
def __cinit__(self):

self.thisptr = new Object()
def __dealloc__(self):

del self.thisptr
def printInfo(self):

self.thisptr.printInfo()

cdef class PyRectangle(PyObject):
def __cinit__(self,int x0,int y0,int x1,int y1):

self.thisptr = new Rectangle(x0,y0,x1,y1)

June 8, 2016 Python meets C/C++ Page 38

Department of Physics

Special features: Operator Overloading
C++ as well as Python offers the potential to define operators for objects.

Example with Rectangles:

A
B

A*B

B*A

Multiplication of rectangles: Create a new rectangle with the bottom left
corner from the first one and the top right corner from the second one
June 8, 2016 Python meets C/C++ Page 39

Department of Physics

Special features: Operator Overloading

C++ code
Rectangle operator*(Rectangle& rhs){

return Rectangle(x0,y0,rhs.x1,rhs.y1);
};

rect.pyx

to expose it to cython
Rectangle operator*(Rectangle)

in the wrapper class
def __mul__(PyRectangle lhs,PyRectangle rhs):

res = PyRectangle(0,0,0,0)
res.thisptr[0] = lhs.thisptr[0]*rhs.thisptr[0] # ptr deref
return res

June 8, 2016 Python meets C/C++ Page 39

Department of Physics

Arrays
Arrays in cython are usually treated via typed memoryviews (e.g.
double[:,:] means a two-dimensional array of doubles, i.e. compatible
with e.g. np.ones((3,4)))

Further you can specify which is the fastest changing index by :1, e.g.
I double[::1,:,:] is a F-contiguous three-dimensional array
I double[:,:,::1] is a C-contiguous three-dimensional array
I double[:,::1,:] is neither F- nor C-contiguous

For example a variable double[:,::1] a has as NumPy arrays variables
like shape and size and the elements can be accessed by a[i,j]

But be aware: NumPy is already heavily optimised, so do not to
reinvent the wheel!

June 8, 2016 Python meets C/C++ Page 40

	Backup

