Nicola Chiapolini, June 7, 2016

Test, Debug, Profile

Nicola Chiapolini

Physik-Institut
University of Zurich

June 7, 2016

Based on a talk by Pietro Berkes
®0 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, June 7, 2016 2/46

Introduction es Debug Profile

Scientific Programming

Goal
» allow exploring many different approaches
» allow frequent changes and adjustments
» produce correct and reproducible results

Requirements

v

bugs most be noticed
code can be modify easily

v

others can run code too

v

v

scientist’s time is used optimally

Nicola Chiapolini, June 7, 2016 3/46

Introduction

Effect of Software Errors
A

frequency

severity

Nicola Chiapolini, June 7, 2016 4/46

Effect of Software Errors: Retractions

Scignce 22 December 2008 < Prev | Table of Contents | Next »
Wol. 314 no. 5807 pp. 1856-1857
DOI: 10.1126/science.314.5807.1856

NEWS OF THE WEEK

SCIENTIFIC PUBLISHING
A Scientist's Nightmare: Software Problem Leads to Five Retractions

Greg Miller

Due to an error caused by a homemade data-analysis program, on page 1875, Geoffrey Chang and his colleagues retract
three Science papers and report that two papers in other journals also contain erroneous structures. (Read more.)

m

m

PLoS journal retracts phylogenetics
paper

Computational Biology journal pulls paper about estimating the accuracy of phylogenetic trees, in what
colleagues deem an exemplary process

By Graciela Fiores | June 18, 2007

© conmen @ Puate 84 o B ik vis [stumble: [Tweet s

PLoS Computational Biology is retracting a paper published in March that claimed that metrics used to measure the
accuracy of phylogenetic trees don't work. Senior author Barry Hall from the Belingham Research Insitute in
Belingham, Washington requested the retraction after a colleague noticed a discrepancy, the fault of a software bug that
upended the paper's conclusion. "We are retracting the paper because the conclusion that we came to was completely
wrong,” Hall told The Scientist."We found no correlation between clade confidence and phylogenetic tree accuracy, but

Nicola Chiapolini, June 7, 2016

Introduction

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

» standard python tools
» ipython magic commands
» mostly command line

Nicola Chiapolini, June 7, 2016

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, June 7, 2016 7146

Testing

Something you do anyway.

v

run code and see if it crashes

v

check if output makes sense

v

run code with trivial input

Nicola Chiapolini, June 7, 2016 8/46

Formal Testing

important part of modern software development
unittest and integration tests

tests written in parallel with code

tests run frequently/automatically

generate reports and statistics

v

v

v

v

v

Nicola Chiapolini, June 7, 2016 9/46

Benefits

v

only way to trust your code
faster development

» know where your bugs are
» fixing bugs will not (re)introduce others
» change code with out worrying about consistency

» encourages better code
» provides example/documentation

v

Nicola Chiapolini, June 7, 2016 10/ 46

An Example

def remove(thelist, entry):
" remove entry object from list """
for idx, item in enumerate(thelist):
if entry is item:
del thelist[idx]
break
else:
raise ValueError("Entry not in the list")

Assume we find this code in an old library of ours.

Nicola Chiapolini, June 7, 2016 10/ 46

An Example

def remove(thelist, entry):
" remove entry object from list """
thelist.remove (entry)

We prefer to keep it simple! Everything fine, right?

Nicola Chiapolini, June 7, 2016 10/ 46

An Example

def remove(thelist, entry):
nm remove entry object from list
thelist.remove (entry)

nnn

11/46

Nicola Chiapolini, June 7, 2016

Start Testing

At the beginning, testing feels weird:

1. It’'s obvious that this code works
2. The tests are longer than the code
3. The test code is a duplicate of the real code

— it might take a while to get used to testing,
but it will pay off quiet rapidly.

Nicola Chiapolini, June 7, 2016

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, June 7, 2016 13/46

unittest

» library for unittests
» part of standard python
» at the level of other modern tools

Alternatives
» nosetests (often used just to run unittests)
> py.test

Nicola Chiapolini, June 7, 2016 14/ 46

Anatomy of a TestCase

import unittest
class DemoTests(unittest.TestCase):

def test_boolean(self):
nnn tests start with ’test’ """
self.assertTrue(True)
self.assertFalse(False)

def test_add(self):
"t docstring can be printed """
self.assertEqual(2+1, 3)

if __name__ == "__main__":
nnit-egecute all tests im module """
unittest.main()

Nicola Chiapolini, June 7, 2016 15/46

Introduction Debug Profile

Summary on Anatomy

Test Cases
» are subclass of unittest.TestCase

» group test units

Test Units
» methods, whose names start with test
» should cover one aspect
» check behaviour with "assertions"
» rise exception if assertion fails

Nicola Chiapolini, June 7, 2016 16 /46

Running Tests

Option 1 execute all test units in all test cases of this file
if __name__ == "__main__":
unittest.main(verbosity=1)

Option 2 Execute all tests in one file

Option 3 Discover all tests in all submodules

Nicola Chiapolini, June 7, 2016 17/ 46

TestCase.assertSomething

» check boolean value

assertTrue (*Hi’.islower()) # fail
assertFalse(’Hi’.islower()) # pass

» check equality

assertEqual (2+1, 3) # pass
"t gssertEqual can compare all sorts of objects """
assertEqual ([2]+[1], [2, 11) # pass

» check numbers are close

from math import sqrt, pi

assertAlmostEqual (sqrt(2), 1.414, places=3) # pass
nin-yglues are rounded, mot truncated """
assertAlmostEqual(pi, 3.141, 3) # fail
assertAlmostEqual (pi, 3.142, 3) # pass

Nicola Chiapolini, June 7, 2016 18/46

TestCase.assertRaises

» most convenient with context managers
with self.assertRaises (ErrorType):
do_something ()
do_some_more ()

» Important: use most specific exception class
bad_file = "inexistent"

with self.assertRaises(FileNotFoundError): # ratses NameError
open(bad_fil, ’r’)

with self.assertRaises(Exception):
open(bad_fil, ’r?) # pass

Nicola Chiapolini, June 7, 2016 19/46

TestCase.assertMoreThings

assertGreater(a, b)
assertLess(a, b)

assertRegex(text, regexp)
assertIn(value, sequence)
assertIsNone(value)
assertIsInstance(my_object, class)

assertCountEqual (actual, expected)

complete list at
https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Nicola Chiapolini, June 7, 2016 20/ 46

TestCase.assertNotSomething

Most of the assert methods have a Not version

assertEqual
assertNotEqual

assertAlmostEqual
assertNotAlmostEqual

assertIsNone
assertIsNotNone

Nicola Chiapolini, June 7, 2016 21/46

Testing with numpy

numpy arrays have to be compared elementwise

class SpecialCases(unittest.TestCase):
def test_numpy(self):
a = numpy.array([1, 21)
b = numpy.array([1, 2])
self.assertEqual(a, b)

Nicola Chiapolini, June 7, 2016 22/46

numpy.testing

» defines appropriate function

numpy . testing.assert_array_equal (x, y)
numpy . testing.assert_array_almost_equal(x, y, decimal=6)

» use numpy functions for more complex tests

numpy . all (x) # True if all elements of = are true
numpy . any (x) # True 2f any of the elements of T is true
numpy.allclose(x, y) # True if element-wise close

Example

mit test that all elements of = are between 0 and 1 """
assertTrue(all(logical_and(x > 0.0, x < 1.0))

Nicola Chiapolini, June 7, 2016 23/46

Strategies for Testing

» What does a good test look like?
» What should | test?

» What is special for scientific code?

Nicola Chiapolini, June 7, 2016 24 /46

What does a good test look like?

Given put system in right state

» create objects, initialise parameters, ...
» define expected result

When action(s) of the test
» one or two lines of code

Then compare result with expectation
» set of assertions

Nicola Chiapolini, June 7, 2016 25/46

What does a good test look like? — Example

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
string = ’HeLl0 wOrld’
expected = ’hello world’

when
result = string.lower()

then
self.assertEqual (result,expected)

Nicola Chiapolini, June 7, 2016 26/46

What should | test?

» simple, general case
string = ’HelLl0 wOrld’

» corner cases
string = ’’
string = ’hello’
string = ’1+2=3’

often involves design decisions
» any exception you raise explicitly

» any special behaviour you rely on

Nicola Chiapolini, June 7, 2016 27 /46

Reduce Overhead 1: Loops

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
Each test case is a tuple (input, ezpected)
test_cases = [(’HeLl1l0 wOrld’, ’hello world’),
(’hi’, ’hi’),
(°123 ([7>, *123 ([??),
(,7’ 7’)]
for string, expected in test_cases:
run several subtests
when
output = string.lower()
then
self.assertEqual (output, expected)

Nicola Chiapolini, June 7, 2016 28/46

Reduce Overhead 1: Subtests

import unittest
class LowerTestCase(unittest.TestCase):

def test_lower(self):
given
Each test case is a tuple (input, ezpected)
test_cases = [(’HeLl1l0 wOrld’, ’hello world’),
(’hi’, ’hi’),
(°123 ([7>, *123 ([??),
(,7, 7’)]
for string, expected in test_cases:
with self.subTest(config = string):
when
output = string.lower()
then
self.assertEqual (output, expected)

Nicola Chiapolini, June 7, 2016 29/46

Reduce Overhead 2: Fixtures

» allow to use same setup/cleanup for several tests

» useful to

» create data set at runtime
» load data from file or database
» create mock objects

» available for test case as well as test unit

class FixureTestCase(unittest.TestCase):

Q@classmethod
def setUpClass(self): # called at start of TestCase
def setUp(self): # called before each test

def tearDown(self): # called at end of each test

Nicola Chiapolini, June 7, 2016 30/46

Introduction Debug

What is special for scientific code?

often deterministic test cases very limited/impossible

Numerical Fuzzing

» generate random input (print random seed)
» still need to know what to expect

Know What You Expect

v

generate data from model

add noise to known solutions

test general routine with specific ones

test optimised algorithm with brute-force approach

v

v

v

Nicola Chiapolini, June 7, 2016 31/46

Introduction Debug Profile

Test Driven Development (TDD)

Tests First
» choose next feature
» write test(s) for feature
» write simplest code

Benefits
» forced to think about design before coding
» code is decoupled and easier to maintain
» you will notice bugs

Nicola Chiapolini, June 7, 2016 32/46

DEMO

Nicola Chiapolini, June 7, 2016

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, June 7, 2016 34 /46

doctest

» poor man’s unittest
» ensure docstrings are up-to-date

def add(a,b):
nntqdd two numbers

>>> add(40,2)
42
nnn

return at+b

Nicola Chiapolini, June 7, 2016 35/46

Introduction Debug

Code Coverage

» it's easy to leave part untested

» features activated by keyword
» code to handle exception

» coverage tools track the lines executed

coverage.py
» python script
» produces text and HTML reports

» not in standard library
get from http://coverage.readthedocs.io/en/latest/

http://coverage.readthedocs.io/en/latest/

Nicola Chiapolini, June 7, 2016 36/46

DEMO

Nicola Chiapolini, June 7, 2016

Outline

Refactor

Optimise

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, June 7, 2016 38/46

Introduction

Debugging

» use tests to avoid bugs and limit ,search space”
» avoid print statements
» use debugger

pdb — the Python debugger

» command line based
» opens an interactive shell

» allows to

stop execution anywhere in your code
execute code step by step

examine and change variables
examine call stack

v

vV vy

Nicola Chiapolini, June 7, 2016 39/46

Entering pdb

» enter at start of file

» enter at statement/function
import pdb
your code here
pdb.run(expression_string)

» enter at point in code

some code here
the debugger starts here

rest of the code

» from ipython

%pdb # enter pddb on ezception
/debug # enter pdb after ewception

Nicola Chiapolini, June 7, 2016 40/ 46

DEMO

Nicola Chiapolini, June 7, 2016

Outline

Refactor

Optimise

41/ 46

Profile

unittest pdb timeit
doctest cProfile
coverage pstats

Nicola Chiapolini, June 7, 2016 42/ 46

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, June 7, 2016 42/ 46

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code
3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, June 7, 2016 43/ 46

timeit
» precise timing for function/expression

» test different versions of a code block
» easiest with ipython’s magic command

a*x*2 or pow(a,2)?
In [1]: a = 43563

In [2]: Ytimeit pow(a,2)
10000000 loops, best of 3: 139 ns per loop

In [3]: Jtimeit a**2
10000000 loops, best of 3: 72.3 ns per loop

Nicola Chiapolini, June 7, 2016 44 /46

cProfile & Pstats

Profiling identify where most time is spent
cProfile standard python module for profiling
pstats tool to show profiling data

» run cProfile

» analyse output from shell

» different options for graphical displays, but no standard yet

Nicola Chiapolini, June 7, 2016 45/ 46

DEMO

Nicola Chiapolini, June 7, 2016 46/ 46

Final Thoughts

v

testing, debugging and profiling can help you a lot

v

using the right tools makes life a lot easier

v

python comes with good tools included

v

it's as easy as it gets — there are no excuses

	Introduction
	Test
	unittest
	doctest & coverage
	coverage

	Debug
	pdb

	Profile
	timeit
	cProfile
	runSnake

