
Nicola Chiapolini, June 16, 2015 1 / 45

Introduction Test Debug Optimise

Software Carpentry

Nicola Chiapolini

Physik-Institut
University of Zurich

June 16, 2015

Based on a talk by Pietro Berkes
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Nicola Chiapolini, June 16, 2015 2 / 45

Introduction Test Debug Optimise

Scientific Programming

Goal
I allow exploring many different approaches
I allow frequent changes and adjustments
I produce correct and reproducible results

Requirements
I bugs most be noticed
I code can be modify easily
I others can run code too
I scientist’s time is used optimally

Nicola Chiapolini, June 16, 2015 3 / 45

Introduction Test Debug Optimise

Effect of Software Errors
fr
eq

ue
nc

y

severity

Nicola Chiapolini, June 16, 2015 4 / 45

Introduction Test Debug Optimise

Effect of Software Errors: Retractions

Nicola Chiapolini, June 16, 2015 5 / 45

Introduction Test Debug Optimise

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest

doctest

coverage

pdb timeit

cProfile

runsnake

I standard python tools
I ipython magic commands
I mostly command line

Nicola Chiapolini, June 16, 2015 6 / 45

Introduction Test Debug Optimise

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest

doctest

coverage

pdb timeit

cProfile

runsnake

I standard python tools
I ipython magic commands
I mostly command line

Nicola Chiapolini, June 16, 2015 7 / 45

Introduction Test Debug Optimise

Testing

Something you do anyway.

I run code and see if it crashes
I check if output makes sense
I run code with trivial input
I ...

Nicola Chiapolini, June 16, 2015 8 / 45

Introduction Test Debug Optimise

Formal Testing
I important part of modern software development
I unittest and integration tests
I tests written in parallel with code
I tests run frequently/automatically
I generate reports and statistics

[...]

replace predefined histogram ... ok

add a legend; change line color of last histogram to red ... ok

put title and axis labels ... ok

--

Ran 18 tests in 5.118s

OK

GoodBye!

Nicola Chiapolini, June 16, 2015 9 / 45

Introduction Test Debug Optimise

Benefits

I only way to trust your code
I faster development

I know where your bugs are
I fixing bugs will not (re)introduce others
I change code with out worrying about consistency

I encourages better code
I provides example/documentation

FAIL: test_result (__main__.FiboTest)

test 7th fibonacci number

--

Traceback (most recent call last):

File "test_demo.py", line 18, in test_result

self.assertEqual(result, expect)

AssertionError: 21 != 13

Nicola Chiapolini, June 16, 2015 10 / 45

Introduction Test Debug Optimise

An Example

def remove(thelist, entry):

""" remove entry object from list """

for idx, item in enumerate(thelist):

if entry is item:

del thelist[idx]

break

else:

raise ValueError("Entry not in the list")

Assume we find this code in an old library of ours.

Nicola Chiapolini, June 16, 2015 10 / 45

Introduction Test Debug Optimise

An Example

def remove(thelist, entry):

""" remove entry object from list """

thelist.remove(entry)

We prefer to keep it simple! Everything fine, right?

Nicola Chiapolini, June 16, 2015 10 / 45

Introduction Test Debug Optimise

An Example

def remove(thelist, entry):

""" remove entry object from list """

thelist.remove(entry)

ERROR: test_remove_array (__main__.RemoveTest)

--

Traceback (most recent call last):

File "list_tests.py", line 19, in test_remove_array

lrm.remove(l, x)

File ".../examples/list_removal.py", line 3, in remove

thelist.remove(entry)

ValueError: The truth value of an array with more than one

element is ambiguous. Use a.any() or a.all()

Nicola Chiapolini, June 16, 2015 11 / 45

Introduction Test Debug Optimise

Start Testing

At the beginning, testing feels weird:

1. It’s obvious that this code works
2. The tests are longer than the code
3. The test code is a duplicate of the real code

→ it might take a while to get used to testing,
but it will pay off quiet rapidly.

Nicola Chiapolini, June 16, 2015 12 / 45

Introduction Test Debug Optimise

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest

doctest

coverage

pdb timeit

cProfile

runsnake

I standard python tools
I ipython magic commands
I mostly command line

Nicola Chiapolini, June 16, 2015 13 / 45

Introduction Test Debug Optimise

unittest

I library for unittests
I part of standard python
I at the level of other modern tools

Alternatives
I nosetests (often used just to run unittests)
I py.test

Nicola Chiapolini, June 16, 2015 14 / 45

Introduction Test Debug Optimise

Anatomy of a TestCase

import unittest

class DemoTests(unittest.TestCase):

def test_boolean(self):

""" tests start with 'test' """

self.assertTrue(True)

self.assertFalse(False)

def test_add(self):

""" docstring can be printed """

self.assertEqual(2+1, 3)

if __name__ == "__main__":

""" execute all tests in module """

unittest.main()

Nicola Chiapolini, June 16, 2015 15 / 45

Introduction Test Debug Optimise

Summary on Anatomy

Test Cases
I are subclass of unittest.TestCase
I group test units

Test Units
I methods, whose names start with test
I should cover one aspect
I check behaviour with "assertions"
I rise exception if assertion fails

Nicola Chiapolini, June 16, 2015 16 / 45

Introduction Test Debug Optimise

Running Tests

Option 1 execute all test units in all test cases of this file
if __name__ == "__main__":

unittest.main(verbosity=1)

python test_module.py

Option 2 Execute all tests in one file
python -m unittest [-v] test_module

Option 3 Discover all tests in all submodules
python -m unittest discover [-v]

Nicola Chiapolini, June 16, 2015 17 / 45

Introduction Test Debug Optimise

TestCase.assertSomething

I check boolean value
assertTrue('Hi'.islower()) # fail

assertFalse('Hi'.islower()) # pass

I check equality
assertEqual(2+1, 3) # pass

""" assertEqual can compare all sorts of objects """

assertEqual([2]+[1], [2, 1]) # pass

I check numbers are close
from math import sqrt, pi

assertAlmostEqual(sqrt(2), 1.414, places=3) # pass

""" values are rounded, not truncated """

assertAlmostEqual(pi, 3.141, 3) # fail

assertAlmostEqual(pi, 3.142, 3) # pass

Nicola Chiapolini, June 16, 2015 18 / 45

Introduction Test Debug Optimise

TestCase.assertRaises

I most convenient with context managers
with self.assertRaises(ErrorType):

do_something()

do_some_more()

I Important: use most specific exception class
with self.assertRaises(IOError): # error

file(1, 'r')

with self.assertRaises(Exception):

file(1, 'r') # pass

""" a TypeError is raised, as file needs string or buffer """

Nicola Chiapolini, June 16, 2015 19 / 45

Introduction Test Debug Optimise

TestCase.assertMoreThings
assertGreater(a, b)

assertLess(a, b)

assertRegexpMatches(text, regexp)

assertIn(value, sequence)

assertIsNone(value)

assertIsInstance(my_object, class)

assertItemsEqual(actual, expected)

assertDictContainsSubset(subset, full)

complete list at
https://docs.python.org/2/library/unittest.html

https://docs.python.org/2/library/unittest.html

Nicola Chiapolini, June 16, 2015 20 / 45

Introduction Test Debug Optimise

TestCase.assertNotSomething

Most of the assert methods have a Not version

assertEqual

assertNotEqual

assertAlmostEqual

assertNotAlmostEqual

assertIsNone

assertIsNotNone

Nicola Chiapolini, June 16, 2015 21 / 45

Introduction Test Debug Optimise

Testing with numpy

numpy arrays have to be compared elementwise

class SpecialCases(unittest.TestCase):

def test_numpy(self):

a = numpy.array([1, 2])

b = numpy.array([1, 2])

self.assertEqual(a, b)

===

ERROR: test_numpy (__main__.SpecialCases)

Traceback (most recent call last):

[..]

ValueError: The truth value of an array with more than one

element is ambiguous. Use a.any() or a.all()

Nicola Chiapolini, June 16, 2015 22 / 45

Introduction Test Debug Optimise

numpy.testing

I defines appropriate function
numpy.testing.assert_array_equal(x, y)

numpy.testing.assert_array_almost_equal(x, y, decimal=6)

I use numpy functions for more complex tests
numpy.all(x) # True if all elements of x are true

numpy.any(x) # True if any of the elements of x is true

numpy.allclose(x, y) # True if element-wise close

Example
""" test that all elements of x are between 0 and 1 """

assertTrue(all(logical_and(x > 0.0, x < 1.0))

Nicola Chiapolini, June 16, 2015 23 / 45

Introduction Test Debug Optimise

Strategies for Testing

I What does a good test look like?

I What should I test?

I What is special for scientific code?

Nicola Chiapolini, June 16, 2015 24 / 45

Introduction Test Debug Optimise

What does a good test look like?

Given put system in right state
I create objects, initialise parameters, ...
I define expected result

When action(s) of the test
I one or two lines of code

Then compare result with expectation
I set of assertions

Nicola Chiapolini, June 16, 2015 25 / 45

Introduction Test Debug Optimise

What does a good test look like? – Example

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):

given

string = 'HeLlO wOrld'

expected = 'hello world'

when

result = string.lower()

then

self.assertEqual(result,expected)

Nicola Chiapolini, June 16, 2015 26 / 45

Introduction Test Debug Optimise

What should I test?

I simple, general case
string = 'HeLlO wOrld'

I corner cases
string = ''

string = 'hello'

string = '1+2=3'

often involves design decisions

I any exception you raise explicitly

I any special behaviour you rely on

Nicola Chiapolini, June 16, 2015 27 / 45

Introduction Test Debug Optimise

Reduce Overhead: Loops

import unittest

class LowerTestCase(unittest.TestCase):

def test_lower(self):

given

Each test case is a tuple (input, expected)

test_cases = [('HeLlO wOrld', 'hello world'),

('hi', 'hi'),

('123 ([?', '123 ([?'),

('', '')]

for string, expected in test_cases:

when

output = string.lower()

then

self.assertEqual(output, expected)

Nicola Chiapolini, June 16, 2015 28 / 45

Introduction Test Debug Optimise

Reduce Overhead: Fixtures

I allow to use same setup/cleanup for several tests
I useful to

I create data set at runtime
I load data from file or database
I create mock objects

I available for test case as well as test unit

class FixureTestCase(unittest.TestCase):

@classmethod

def setUpClass(self): # called at start of TestCase

def setUp(self): # called before each test

def tearDown(self): # called at end of each test

Nicola Chiapolini, June 16, 2015 29 / 45

Introduction Test Debug Optimise

What is special for scientific code?
often deterministic test cases very limited/impossible

Numerical Fuzzing
I generate random input
I still need to know what to expect
I print random seed

Know What You Expect
I generate data from model
I add noise to known solutions
I test general routine with specific ones
I test optimised algorithm with brute-force approach

Nicola Chiapolini, June 16, 2015 30 / 45

Introduction Test Debug Optimise

Test Driven Development (TDD)

Tests First
I choose next feature
I write test(s) for feature
I write simplest code

Benefits
I forced to think about design before coding
I code is decoupled and easier to maintain
I you will notice bugs

Nicola Chiapolini, June 16, 2015 31 / 45

Introduction Test Debug Optimise

DEMO

Nicola Chiapolini, June 16, 2015 32 / 45

Introduction Test Debug Optimise

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest

doctest

coverage

pdb timeit

cProfile

runsnake

I standard python tools
I ipython magic commands
I mostly command line

Nicola Chiapolini, June 16, 2015 33 / 45

Introduction Test Debug Optimise

doctest

I poor man’s unittest
I ensure docstrings are up-to-date

def add(a,b):

""" add two numbers

Example

>>> add(40,2)

42

"""

return a+b

python -m doctest [-v] my_doctest.py

Trying:

add(40,2)

Expecting:

42

ok

1 items had no tests:

my_doctest

1 items passed all tests:

1 tests in my_doctest.add

1 tests in 2 items.

1 passed and 0 failed.

Test passed.

Nicola Chiapolini, June 16, 2015 34 / 45

Introduction Test Debug Optimise

Code Coverage

I it’s easy to leave part untested
I features activated by keyword
I code to handle exception

I coverage tools track the lines executed

coverage.py
I python script

I produces text and HTML reports
python -m coverage run test_file.py

python -m coverage report [-m]

I not in standard library
get from http://nedbatchelder.com/code/coverage/

http://nedbatchelder.com/code/coverage/

Nicola Chiapolini, June 16, 2015 35 / 45

Introduction Test Debug Optimise

DEMO

Nicola Chiapolini, June 16, 2015 36 / 45

Introduction Test Debug Optimise

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest

doctest

coverage

pdb timeit

cProfile

runsnake

I standard python tools
I ipython magic commands
I mostly command line

Nicola Chiapolini, June 16, 2015 37 / 45

Introduction Test Debug Optimise

Debugging

I use tests to avoid bugs and limit „search space”
I avoid print statements
I use debugger

pdb – the Python debugger
I command line based
I opens an interactive shell
I allows to

I stop execution anywhere in your code
I execute code step by step
I examine and change variables
I examine call stack

Nicola Chiapolini, June 16, 2015 38 / 45

Introduction Test Debug Optimise

Entering pdb

I enter at start of file
python -m pdb myscript.py

I enter at statement/function
import pdb

your code here

pdb.run(expression_string)

I enter at point in code
some code here

the debugger starts here

import pdb; pdb.set_trace()

rest of the code

I from ipython
%pdb # enter pdb on exception

%debug # enter pdb after exception

Nicola Chiapolini, June 16, 2015 39 / 45

Introduction Test Debug Optimise

DEMO

Nicola Chiapolini, June 16, 2015 40 / 45

Introduction Test Debug Optimise

Outline

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

unittest

doctest

coverage

pdb timeit

cProfile

runsnake

I standard python tools
I ipython magic commands
I mostly command line

Nicola Chiapolini, June 16, 2015 41 / 45

Introduction Test Debug Optimise

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code

3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, June 16, 2015 41 / 45

Introduction Test Debug Optimise

Optimising

1. don’t rush into optimisation

2. identify time-consuming parts of code

3. only optimise those parts

4. keep running tests

5. stop as soon as possible

Nicola Chiapolini, June 16, 2015 42 / 45

Introduction Test Debug Optimise

timeit

I precise timing for function/expression
I test different versions of a code block
I easiest with ipython’s magic command

a**2 or pow(a,2)?
In [1]: a = 43563

In [2]: %timeit pow(a,2)

10000000 loops, best of 3: 139 ns per loop

In [3]: %timeit a**2

10000000 loops, best of 3: 72.3 ns per loop

Nicola Chiapolini, June 16, 2015 43 / 45

Introduction Test Debug Optimise

cProfile & RunSnake

Profiling identify where most time is spent
cProfile standard python module for profiling

RunSnake graphic tool to show profiling data

I run cProfile
python -m cProfile [-o myscript.prof] myscript.py

I analyse output from shell
import pstat

p = pstat.Stats("myscirpt.prof")

p.sort_stats(sort_order)

p.print_stats()

I or with RunSnake
runsnake myscript.prof

Nicola Chiapolini, June 16, 2015 44 / 45

Introduction Test Debug Optimise

DEMO

Nicola Chiapolini, June 16, 2015 45 / 45

Introduction Test Debug Optimise

Final Thoughts

I testing, debugging and profiling can help you a lot

I using the right tools makes life a lot easier

I python comes with good tools included

I it’s as easy as it gets – there are no excuses

	Introduction
	Test
	unittest
	doctest & coverage
	coverage

	Debug
	pdb

	Optimise
	timeit
	cProfile
	runSnake

