
Nicola Chiapolini, January 26, 2015 1 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Best Practices

Nicola Chiapolini

Physik-Institut
University of Zurich

January 26, 2015

Based on talk by Valentin Haenel https://github.com/esc/best-practices-talk

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://github.com/esc/best-practices-talk
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


Nicola Chiapolini, January 26, 2015 2 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Introduction



Nicola Chiapolini, January 26, 2015 3 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Introduction
I We write code regularly
I We have not been formally trained

Best Practices
I evolved from experience
I increase productivity
I decrease stress
I still evolve with tools and languages

Development Methodologies
I e.g. Agile Programming or Test Driven Development
I lots of buzzwords
I still many helpful ideas



Nicola Chiapolini, January 26, 2015 4 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies



Nicola Chiapolini, January 26, 2015 5 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies



Nicola Chiapolini, January 26, 2015 6 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Coding Style
I readability counts
I explicit is better than implicit

I give variables intention revealing names
I For example: numbers instead of n
I For example: numbers instead of list_of_float_numbers
I See also: Ottingers Rules for Naming

Example
def my_product(numbers):

""" Compute the product of a sequence of numbers. """

total = 1

for item in numbers:

total *= item

return total

http://objectmentor.com/resources/articles/naming.htm


Nicola Chiapolini, January 26, 2015 7 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Formatting Code
I use coding conventions
I conventions specify:

I variable naming
I indentation
I import
I maximum line length
I blank lines, whitespace, comments

I e.g: PEP-8
I OR use a consistent style (especially when collaborating)

Tools
I pylint
I pep8
I flake8

http://www.python.org/dev/peps/pep-0008/
http://www.pylint.org/
https://pypi.python.org/pypi/pep8
http://pypi.python.org/pypi/flake8/


Nicola Chiapolini, January 26, 2015 8 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Documenting Code: Docstrings

Example
def my_product(numbers):

""" Compute the product of a sequence of numbers. """

I at least a single line
I also for yourself
I is on-line help too

I Document arguments and return objects, including types
I For complex algorithms, document every line,

and include equations in docstring
I Use the numpy docstring conventions

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt


Nicola Chiapolini, January 26, 2015 9 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Example Docstring
def my_product(numbers):

""" Compute the product of a sequence of numbers.

Parameters

----------

numbers : sequence

list of numbers to multiply

Returns

-------

product : number

the final product

Raises

------

TypeError

if argument is not a sequence or sequence contains

types that can't be multiplied

"""



Nicola Chiapolini, January 26, 2015 10 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Documenting Code

I tools generate website
from docstrings

I pydoc
I epydoc
I sphinx

I when project gets bigger
I how-to
I FAQ
I quick-start

http://docs.python.org/library/pydoc.html
http://epydoc.sourceforge.net/
http://sphinx.pocoo.org/


Nicola Chiapolini, January 26, 2015 11 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies



Nicola Chiapolini, January 26, 2015 12 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

import

I Don’t use the star import: from module import *

I hard to read
I modules may overwrite each other
I Where does this function come from?
I will import everything in a module
I ...unless you have a very good reason: e.g. pylab, interactive

I Put all imports at the beginning of the file...
I ...unless you have a very good reason

Example
import my_product as mp

mp.my_product([1,2,3])

from my_product import my_product

my_product([1,2,3])



Nicola Chiapolini, January 26, 2015 13 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Exceptions
I use try except and raise

I often better then if (e.g. IndexError)

Example
try:

my_product(1,2,3)

except TypeError:

print "'my_product' expects a sequence"

raise TypeError

I don’t use special return values:
1, 0, False, None

I Fail early, fail often
I use built-in Exceptions

http://docs.python.org/library/exceptions.html


Nicola Chiapolini, January 26, 2015 14 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies



Nicola Chiapolini, January 26, 2015 15 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Keep it Simple (Stupid) – KIS(S) Principle

Keep it Simple



Nicola Chiapolini, January 26, 2015 15 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Keep it Simple (Stupid) – KIS(S) Principle

Keep it Simple



Nicola Chiapolini, January 26, 2015 16 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY)

I No cupy & paste!

I Not just lines code, but knowledge of all sorts
I Do not express the same piece of knowledge in two places...
I ...or you will have to update it everywhere

I It is not a question of if this may fail, but when



Nicola Chiapolini, January 26, 2015 17 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY): Types

Example
I Version number in source code, website, readme, package

filename
I Copy-and-paste a snippet, instead of refactoring it into a function
I Repeated implementation of utility methods

I because you don’t remember
I because you don’t know the libraries

numpy.prod([1,2,3])

I because developers don’t talk to each other

I If you detect duplication: refactor mercilessly!



Nicola Chiapolini, January 26, 2015 17 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Don’t Repeat Yourself (DRY): Types

Example
I Version number in source code, website, readme, package

filename
I Copy-and-paste a snippet, instead of refactoring it into a function
I Repeated implementation of utility methods

I because you don’t remember
I because you don’t know the libraries

numpy.prod([1,2,3])

I because developers don’t talk to each other

I If you detect duplication: refactor mercilessly!



Nicola Chiapolini, January 26, 2015 18 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies



Nicola Chiapolini, January 26, 2015 19 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring

I re-organise your code without changing its function

I rethink earlier design decisions
I break large code blocks apart
I rename and restructure code

I will improve the readability and modularity
I will usually reduce the lines of code



Nicola Chiapolini, January 26, 2015 20 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Common Refactoring Operations

I Rename class/method/module/package/function
I Move class/method/module/package/function
I Encapsulate code in method/function
I Change method/function signature
I Organise imports (remove unused and sort)

I Always refactor one step at a time, and ensure code still works
I version control
I unit tests



Nicola Chiapolini, January 26, 2015 21 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

def my_func(numbers):

""" Difference between sum and product of sequence. """

total = 0

for item in numbers:

total += item

total2 = 1

for item in numbers:

total2 *= item

return total2 - total

I split into functions
I use libraries/built-ins
I fix bug



Nicola Chiapolini, January 26, 2015 21 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from my_math import my_product, my_sum

def my_func(numbers):

""" Difference between sum and product of sequence. """

sum_value = my_sum(numbers)

product_value = my_product(numbers)

return product_value - sum_value

I split into functions
I use libraries/built-ins
I fix bug



Nicola Chiapolini, January 26, 2015 21 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from numpy import prod, sum

def my_func(numbers):

""" Difference between sum and product of sequence. """

sum_value = sum(numbers)

product_value = prod(numbers)

return product_value - sum_value

I split into functions
I use libraries/built-ins
I fix bug



Nicola Chiapolini, January 26, 2015 21 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Refactoring Example

from numpy import prod, sum

def my_func(numbers):

""" Difference between sum and product of sequence. """

sum_value = sum(numbers)

product_value = prod(numbers)

return sum_value - product_value

I split into functions
I use libraries/built-ins
I fix bug



Nicola Chiapolini, January 26, 2015 22 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Outline

Introduction

Style and Documentation

Special Python Statements

KIS(S) & DRY

Refactoring

Development Methodologies



Nicola Chiapolini, January 26, 2015 23 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

What is a Development Methodology?

Consists of:
I attitude, style and approach towards development
I tools and models to support approach

Help answer questions like:
I How far ahead should I plan?
I What should I prioritise?
I When do I write tests and documentation?

Right methodology depends on scenario.



Nicola Chiapolini, January 26, 2015 23 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

What is a Development Methodology?

Consists of:
I attitude, style and approach towards development
I tools and models to support approach

Help answer questions like:
I How far ahead should I plan?
I What should I prioritise?
I When do I write tests and documentation?

Right methodology depends on scenario.



Nicola Chiapolini, January 26, 2015 24 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

The Waterfall Model, Royce 1970

I sequential
I from manufacturing and construction



Nicola Chiapolini, January 26, 2015 25 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Agile Methods (late 90’s)

I minimal planning, small development iterations
I design/implement/test on a modular level
I frequent input from team/customer/boss/professor
I very adaptive, since nothing is set in stone



Nicola Chiapolini, January 26, 2015 26 / 26

Introduction Style and Documentation Special Python Statements KIS(S) & DRY Refactoring Development Methodologies

Test Driven Development (TDD)

Write simplest
version of code

Write tests
to check code

Run tests; debug
until tests pass

Refactor
Optimise

I Define unit tests first!
I Develop one unit at a time!

I more tomorrow


	Introduction
	Style and Documentation
	Special Python Statements
	KIS(S) & DRY
	Refactoring
	Development Methodologies

